The length function and matrix algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 65-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field we mean the least positive integer $k$ such that the words of length not exceeding $k$ span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, we study the main ring-theoretical properties of the length function: the behavior of the length under unity adjunction, direct sum of algebras, passing to subalgebras and homomorphic images. We give an upper bound for the length of the algebra as a function of the nilpotency index of its Jacobson radical and the length of the quotient algebra. We also provide examples of the length computation for certain algebras, in particular, for the following classical matrix subalgebras: the algebra of upper triangular matrices, the algebra of diagonal matrices, the Schur algebra, Courter's algebra, and for the classes of local and commutative algebras.
@article{FPM_2012_17_6_a3,
     author = {O. V. Markova},
     title = {The length function and matrix algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--173},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a3/}
}
TY  - JOUR
AU  - O. V. Markova
TI  - The length function and matrix algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 65
EP  - 173
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a3/
LA  - ru
ID  - FPM_2012_17_6_a3
ER  - 
%0 Journal Article
%A O. V. Markova
%T The length function and matrix algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 65-173
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a3/
%G ru
%F FPM_2012_17_6_a3
O. V. Markova. The length function and matrix algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 65-173. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a3/

[1] Alpin Yu. A., Ikramov Kh. D., “Ob unitarnom podobii matrichnykh semeistv”, Mat. zametki, 74:6 (2003), 815–826 | DOI | MR | Zbl

[2] Voevodin V. V., Tyrtyshnikov E. E., Vychislitelnye protsessy s teplitsevymi matritsami, Nauka, M., 1987 | MR | Zbl

[3] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[4] Lidl R., Niderraiter G., Konechnye polya, v. 1, Mir, M., 1988 | Zbl

[5] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1975

[6] Markova O. V., “O dline algebry verkhnetreugolnykh matrits”, Uspekhi mat. nauk, 60:5 (2005), 177–178 | DOI | MR | Zbl

[7] Markova O. V., “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fundament. i prikl. mat., 13:4 (2007), 165–197 | MR | Zbl

[8] Markova O. V., “Verkhnyaya otsenka dliny kommutativnykh algebr”, Mat. sb., 200:12 (2009), 41–62 | DOI | MR | Zbl

[9] Markova O. V., “Kharakterizatsiya kommutativnykh matrichnykh podalgebr maksimalnoi dliny nad proizvolnym polem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 5, 53–55 | MR

[10] Markova O. V., “O nekotorykh svoistvakh funktsii dliny”, Mat. zametki, 87:1 (2010), 83–91 | DOI | MR | Zbl

[11] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[12] Suprunenko D. A., Tyshkevich R. I., Perestanovochnye matritsy, URSS, M., 2003 | MR | Zbl

[13] Fam Vet Khung, “Verkhnyaya granitsa dlya razmernosti kommutativnykh nilpotentnykh podalgebr algebry matrits”, Izv. Akad. nauk BSSR. Ser. fiz.-mat. nauk, 3 (1987), 110–111 | MR

[14] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[15] Al'pin Yu. A., Ikramov Kh. D., “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl

[16] Brown W. C., Call F. W., “Maximal commutative subalgebras of $n\times n$ matrices”, Commun. Algebra, 21:12 (1993), 4439–4460 | DOI | MR | Zbl

[17] Constantine D., Darnall M., “Lengths of finite dimensional representations of PWB algebras”, Linear Algebra Appl., 395 (2005), 175–181 | DOI | MR | Zbl

[18] Courter R. C., “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32 (1965), 225–232 | DOI | MR | Zbl

[19] Gerstenhaber M., “On dominance and varieties of commuting matrices”, Ann. Math., 73:2 (1961), 324–348 | DOI | MR | Zbl

[20] Guterman A. E., Markova O. V., “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl

[21] Horn R. A., Johnson C. R., Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[22] Jacobson N., “Schur's theorems on commutative matrices”, Bull. Am. Math. Soc., 50 (1944), 431–436 | DOI | MR | Zbl

[23] Laffey T. J., “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212 | DOI | MR | Zbl

[24] Laffey T. J., “Simultaneous reduction of sets of matrices under similarity”, Linear Algebra Appl., 84 (1986), 123–138 | DOI | MR | Zbl

[25] Laffey T. J., Lazarus S., “Two-generated commutative matrix subalgebras”, Linear Algebra Appl., 147 (1991), 249–273 | DOI | MR | Zbl

[26] Longstaff W. E., “Burnside's theorem: irreducible pairs of transformations”, Linear Algebra Appl., 382 (2004), 247–269 | DOI | MR | Zbl

[27] Longstaff W. E., Rosenthal P., “On the lengths of irreducible pairs of complex matrices”, Proc. Am. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR | Zbl

[28] Markova O. V., “Matrix algebras and their length”, Matrix Methods: Theory, Algorithms, Applications, World Scientific, 2010, 116–139 | DOI | MR | Zbl

[29] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl

[30] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl

[31] Radjavi H., Rosenthal P., Simultaneous Triangularization, Springer, New York, 2000 | MR | Zbl

[32] Schur I., “Zur Theorie der vertauschbären Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | Zbl

[33] Song Y., “A construction of maximal commutative subalgebra of matrix algebras”, J. Korean Math. Soc., 40:2 (2003), 241–250 | DOI | MR | Zbl

[34] Spencer A. J. M., Rivlin R. S., “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Ration. Mech. Anal., 2 (1959), 309–336 | DOI | MR | Zbl

[35] Spencer A. J. M., Rivlin R. S., “Further results in the theory of matrix polynomials”, Arch. Ration. Mech. Anal., 4 (1960), 214–230 | DOI | MR | Zbl

[36] Wadsworth A., “The algebra generated by two commuting matrices”, Linear and Multilinear Algebra, 27 (1990), 159–162 | DOI | MR | Zbl