Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_6_a3, author = {O. V. Markova}, title = {The length function and matrix algebras}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {65--173}, publisher = {mathdoc}, volume = {17}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a3/} }
O. V. Markova. The length function and matrix algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 65-173. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a3/
[1] Alpin Yu. A., Ikramov Kh. D., “Ob unitarnom podobii matrichnykh semeistv”, Mat. zametki, 74:6 (2003), 815–826 | DOI | MR | Zbl
[2] Voevodin V. V., Tyrtyshnikov E. E., Vychislitelnye protsessy s teplitsevymi matritsami, Nauka, M., 1987 | MR | Zbl
[3] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl
[4] Lidl R., Niderraiter G., Konechnye polya, v. 1, Mir, M., 1988 | Zbl
[5] Maltsev A. I., Osnovy lineinoi algebry, Nauka, M., 1975
[6] Markova O. V., “O dline algebry verkhnetreugolnykh matrits”, Uspekhi mat. nauk, 60:5 (2005), 177–178 | DOI | MR | Zbl
[7] Markova O. V., “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fundament. i prikl. mat., 13:4 (2007), 165–197 | MR | Zbl
[8] Markova O. V., “Verkhnyaya otsenka dliny kommutativnykh algebr”, Mat. sb., 200:12 (2009), 41–62 | DOI | MR | Zbl
[9] Markova O. V., “Kharakterizatsiya kommutativnykh matrichnykh podalgebr maksimalnoi dliny nad proizvolnym polem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 5, 53–55 | MR
[10] Markova O. V., “O nekotorykh svoistvakh funktsii dliny”, Mat. zametki, 87:1 (2010), 83–91 | DOI | MR | Zbl
[11] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR
[12] Suprunenko D. A., Tyshkevich R. I., Perestanovochnye matritsy, URSS, M., 2003 | MR | Zbl
[13] Fam Vet Khung, “Verkhnyaya granitsa dlya razmernosti kommutativnykh nilpotentnykh podalgebr algebry matrits”, Izv. Akad. nauk BSSR. Ser. fiz.-mat. nauk, 3 (1987), 110–111 | MR
[14] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[15] Al'pin Yu. A., Ikramov Kh. D., “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl
[16] Brown W. C., Call F. W., “Maximal commutative subalgebras of $n\times n$ matrices”, Commun. Algebra, 21:12 (1993), 4439–4460 | DOI | MR | Zbl
[17] Constantine D., Darnall M., “Lengths of finite dimensional representations of PWB algebras”, Linear Algebra Appl., 395 (2005), 175–181 | DOI | MR | Zbl
[18] Courter R. C., “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32 (1965), 225–232 | DOI | MR | Zbl
[19] Gerstenhaber M., “On dominance and varieties of commuting matrices”, Ann. Math., 73:2 (1961), 324–348 | DOI | MR | Zbl
[20] Guterman A. E., Markova O. V., “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl
[21] Horn R. A., Johnson C. R., Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[22] Jacobson N., “Schur's theorems on commutative matrices”, Bull. Am. Math. Soc., 50 (1944), 431–436 | DOI | MR | Zbl
[23] Laffey T. J., “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212 | DOI | MR | Zbl
[24] Laffey T. J., “Simultaneous reduction of sets of matrices under similarity”, Linear Algebra Appl., 84 (1986), 123–138 | DOI | MR | Zbl
[25] Laffey T. J., Lazarus S., “Two-generated commutative matrix subalgebras”, Linear Algebra Appl., 147 (1991), 249–273 | DOI | MR | Zbl
[26] Longstaff W. E., “Burnside's theorem: irreducible pairs of transformations”, Linear Algebra Appl., 382 (2004), 247–269 | DOI | MR | Zbl
[27] Longstaff W. E., Rosenthal P., “On the lengths of irreducible pairs of complex matrices”, Proc. Am. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR | Zbl
[28] Markova O. V., “Matrix algebras and their length”, Matrix Methods: Theory, Algorithms, Applications, World Scientific, 2010, 116–139 | DOI | MR | Zbl
[29] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[30] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[31] Radjavi H., Rosenthal P., Simultaneous Triangularization, Springer, New York, 2000 | MR | Zbl
[32] Schur I., “Zur Theorie der vertauschbären Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | Zbl
[33] Song Y., “A construction of maximal commutative subalgebra of matrix algebras”, J. Korean Math. Soc., 40:2 (2003), 241–250 | DOI | MR | Zbl
[34] Spencer A. J. M., Rivlin R. S., “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Ration. Mech. Anal., 2 (1959), 309–336 | DOI | MR | Zbl
[35] Spencer A. J. M., Rivlin R. S., “Further results in the theory of matrix polynomials”, Arch. Ration. Mech. Anal., 4 (1960), 214–230 | DOI | MR | Zbl
[36] Wadsworth A., “The algebra generated by two commuting matrices”, Linear and Multilinear Algebra, 27 (1990), 159–162 | DOI | MR | Zbl