Projection matrices revisited: a~potential-growth indicator and the merit of indication
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 41-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematics of matrix models for age- or/and stage-structured population dynamics substantiates the use of the dominant eigenvalue $\lambda_1$ of the projection matrix $\boldsymbol L$ as a measure of the growth potential, or of adaptation, for a given species population in modern plant or animal demography. The calibration of $\boldsymbol L=\boldsymbol T+\boldsymbol F$ on the “identified-individuals-of-unknown-parents” kind of empirical data determines precisely the transition matrix $\boldsymbol T$, but admits arbitrariness in the estimation of the fertility matrix $\boldsymbol F$. We propose an adaptation principle that reduces calibration to the maximization of $\lambda_1(\boldsymbol L)$ under the fixed $\boldsymbol T$ and constraints on $\boldsymbol F$ ensuing from the data and expert knowledge. A theorem has been proved on the existence and uniqueness of the maximizing solution for projection matrices of a general pattern. A conjugated maximization problem for a “potential-growth indicator” under the same constraints has appeared to be a linear-programming problem with a ready solution, the solution testing whether the data and knowledge are compatible with the population growth observed.
@article{FPM_2012_17_6_a2,
     author = {D. O. Logofet},
     title = {Projection matrices revisited: a~potential-growth indicator and the merit of indication},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {41--63},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a2/}
}
TY  - JOUR
AU  - D. O. Logofet
TI  - Projection matrices revisited: a~potential-growth indicator and the merit of indication
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 41
EP  - 63
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a2/
LA  - ru
ID  - FPM_2012_17_6_a2
ER  - 
%0 Journal Article
%A D. O. Logofet
%T Projection matrices revisited: a~potential-growth indicator and the merit of indication
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 41-63
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a2/
%G ru
%F FPM_2012_17_6_a2
D. O. Logofet. Projection matrices revisited: a~potential-growth indicator and the merit of indication. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 41-63. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a2/

[1] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[3] Klochkova I. N., “Obobschenie teoremy o reproduktivnom potentsiale dlya matrits Logofeta”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2004, no. 3, 45–48 | MR | Zbl

[4] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1973 | MR

[5] Logofet D. O., “K teorii matrichnykh modelei dinamiki populyatsii s vozrastnoi i dopolnitelnoi strukturami”, Zhurn. obsch. biol., 52:6 (1991), 793–804

[6] Logofet D. O., “Puti i tsikly v orgrafe kak instrumenty kharakterizatsii nekotorykh klassov matrits”, Dokl. RAN, 367:3 (1999), 295–298 | MR | Zbl

[7] Logofet D. O., “Tri istochnika i tri sostavnye chasti formalizma populyatsii s diskretnoi stadiinoi i vozrastnoi strukturami”, Mat. modelirovanie, 14:12 (2002), 11–22 | MR | Zbl

[8] Logofet D. O., “Svirezhevskii printsip zamescheniya i matrichnye modeli dinamiki populyatsii so slozhnoi strukturoi”, Zhurn. obsch. biol., 71:1 (2010), 30–40 http://elementy.ru/genbio/synopsis?artid=292

[9] Logofet D. O., Belova I. N., “Neotritsatelnye matritsy kak instrument modelirovaniya dinamiki populyatsii: klassicheskie modeli i sovremennye obobscheniya”, Fundament. i prikl. mat., 13:4 (2007), 145–164 | MR | Zbl

[10] Logofet D. O., Klochkova I. N., “Matematika modeli Lefkovicha: reproduktivnyi potentsial i asimptoticheskie tsikly”, Mat. modelirovanie, 14:10 (2002), 116–126 | MR | Zbl

[11] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR

[12] Ulanova N. G., Belova I. N., Logofet D. O., “O konkurentsii sredi populyatsii s diskretnoi strukturoi: dinamika populyatsii veinika i berezy, rastuschikh sovmestno”, Zhurn. obsch. biol., 69:6 (2008), 478–494

[13] Ulanova N. G., Demidova A. N., “Populyatsionnaya biologiya veinika sedeyuschego (Calamagrostis canescens (Web.) Roth) na vyrubkakh elnikov yuzhnoi taigi”, Byul. Mosk. o-va ispytatelei prirody. Otd. biol., 106:5 (2001), 51–58

[14] Ulanova N. G., Demidova A. N., Logofet D. O., Klochkova I. N., “Struktura i dinamika tsenopopulyatsii veinika sedeyuschego Calamagrostis canescens: modelnyi podkhod”, Zhurn. obsch. biol., 63:6 (2002), 509–521

[15] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Nauka, M., 1970

[16] Akcakaya R. H., Burgman M. A., Ginzburg L. R., Applied Population Ecology: Principles and Computer Exercises Using RAMAS EcoLab 2.0, Sinauer, Sunderland, 1999

[17] Bernardelli H., “Population waves”, J. Burma Research Soc., 31 (1941), 1–18

[18] Brewster-Geisz K. K., Miller T. J., “Management of the sandbar shark, Carcharhinus plumbeus: implications of a stage-based model”, Fish. Bull., 98 (2000), 236–249

[19] De Camino-Beck T., Lewis M. A., “On net reproductive rate and the timing of reproductive output”, Am. Naturalist, 172:1 (2008), 128–139 | DOI

[20] Caswell H., Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer, Sunderland, 1989

[21] Caswell H., Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates, Sunderland, 2001

[22] Csetenyi A. I., Logofet D. O., “Leslie model revisited: Some generalizations for block structures”, Ecological Modelling, 48 (1989), 277–290 | DOI

[23] Cull P., Vogt A., “The periodic limits for the Leslie model”, Math. Biosci., 21 (1974), 39–54 | DOI | MR | Zbl

[24] Cushing J. M., Yicang Z., “The net reproductive value and stability in matrix population models”, Natural Resources Modeling, 8 (1994), 297–333

[25] Geramita J. M., Pullman N. J., An Introduction to the Application of Nonnegative Matrices to Biological Systems, Queen's Papers Pure Appl. Math., 68, Queen's Univ., Kingston, Ontario, Canada, 1984 | MR | Zbl

[26] Goodman L. A., “The analysis of population growth when the birth and death rates depend upon several factors”, Biometrics, 25 (1969), 659–681 | DOI | MR

[27] Hansen P. E., “Leslie matrix models: A mathematical survey”, Papers on Mathematical Ecology, v. I, ed. A. I. Csetenyi, Karl Marx Univ. of Economics, Budapest, 1986, 54–106 | MR

[28] Harary F., Norman R. Z., Cartwright D., Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York, 1965 | MR | Zbl

[29] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, London, 1990 | MR | Zbl

[30] Impagliazzo J., Deterministic Aspects of Mathematical Demography: An Investigation of Stable Population Theory Including an Analysis of the Population Statistics of Denmark, Biomathematics, 13, Springer, Berlin, 1985 | MR

[31] Lefkovitch L. P., “The study of population growth in organisms grouped by stages”, Biometrics, 21 (1965), 1–18 | DOI

[32] Leslie P. H., “On the use of matrices in certain population mathematics”, Biometrika, 33 (1945), 183–212 | DOI | MR | Zbl

[33] Lewis E. G., “On the generation and growth of a population”, Sankhya: The Indian J. Statistics, 6 (1942), 93–96

[34] Li C.-K., Schneider H., “Application of Perron–Frobenius theory to population dynamics”, J. Math. Biol., 44 (2002), 450–462 | DOI | MR | Zbl

[35] Logofet D. O., Matrices and Graphs: Stability Problems in Mathematical Ecology, CRC Press, Boca Raton, 1993

[36] Logofet D. O., “Convexity in projection matrices: projection to a calibration problem”, Ecological Modelling, 216 (2008), 217–228 | DOI

[37] Logofet D. O., Ulanova N. G., Klochkova I. N., Demidova A. N., “Structure and dynamics of a clonal plant population: Classical model results in a non-classic formulation”, Ecological Modelling, 192 (2006), 95–106 | DOI

[38] Maybee J. S., Olesky D. D., van den Driessche P., Wiener G., “Matrices, digraphs, and determinants”, SIAM J. Matrix Anal. Appl., 10 (1989), 500–519 | DOI | MR | Zbl

[39] Romanovsky V., “Un théorème sur les zeros des matrices non négatives”, Bull. Soc. Math. France, 61 (1933), 213–219 | MR | Zbl

[40] Salguero-Gómez R., Casper B. B., “Keeping plant shrinkage in the demographic loop”, J. Ecology, 98:2 (2010), 312–323 | DOI

[41] Salguero-Gómez R., de Kroon H., “Matrix projection models meet variation in the real world”, J. Ecology, 98 (2010), 250–254 | DOI

[42] Seneta E., Non-Negative Matrices and Markov Chains, Springer, New York, 1981 | MR | Zbl

[43] Ulanova N. G., “Plant age stages during succession in woodland clearing in central Russia”, Vegetation Science in Retrospect and Perspective, Opulus, Uppsala, 2000, 80–83