Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_6_a2, author = {D. O. Logofet}, title = {Projection matrices revisited: a~potential-growth indicator and the merit of indication}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {41--63}, publisher = {mathdoc}, volume = {17}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a2/} }
TY - JOUR AU - D. O. Logofet TI - Projection matrices revisited: a~potential-growth indicator and the merit of indication JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 41 EP - 63 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a2/ LA - ru ID - FPM_2012_17_6_a2 ER -
D. O. Logofet. Projection matrices revisited: a~potential-growth indicator and the merit of indication. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 41-63. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a2/
[1] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl
[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR
[3] Klochkova I. N., “Obobschenie teoremy o reproduktivnom potentsiale dlya matrits Logofeta”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2004, no. 3, 45–48 | MR | Zbl
[4] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1973 | MR
[5] Logofet D. O., “K teorii matrichnykh modelei dinamiki populyatsii s vozrastnoi i dopolnitelnoi strukturami”, Zhurn. obsch. biol., 52:6 (1991), 793–804
[6] Logofet D. O., “Puti i tsikly v orgrafe kak instrumenty kharakterizatsii nekotorykh klassov matrits”, Dokl. RAN, 367:3 (1999), 295–298 | MR | Zbl
[7] Logofet D. O., “Tri istochnika i tri sostavnye chasti formalizma populyatsii s diskretnoi stadiinoi i vozrastnoi strukturami”, Mat. modelirovanie, 14:12 (2002), 11–22 | MR | Zbl
[8] Logofet D. O., “Svirezhevskii printsip zamescheniya i matrichnye modeli dinamiki populyatsii so slozhnoi strukturoi”, Zhurn. obsch. biol., 71:1 (2010), 30–40 http://elementy.ru/genbio/synopsis?artid=292
[9] Logofet D. O., Belova I. N., “Neotritsatelnye matritsy kak instrument modelirovaniya dinamiki populyatsii: klassicheskie modeli i sovremennye obobscheniya”, Fundament. i prikl. mat., 13:4 (2007), 145–164 | MR | Zbl
[10] Logofet D. O., Klochkova I. N., “Matematika modeli Lefkovicha: reproduktivnyi potentsial i asimptoticheskie tsikly”, Mat. modelirovanie, 14:10 (2002), 116–126 | MR | Zbl
[11] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR
[12] Ulanova N. G., Belova I. N., Logofet D. O., “O konkurentsii sredi populyatsii s diskretnoi strukturoi: dinamika populyatsii veinika i berezy, rastuschikh sovmestno”, Zhurn. obsch. biol., 69:6 (2008), 478–494
[13] Ulanova N. G., Demidova A. N., “Populyatsionnaya biologiya veinika sedeyuschego (Calamagrostis canescens (Web.) Roth) na vyrubkakh elnikov yuzhnoi taigi”, Byul. Mosk. o-va ispytatelei prirody. Otd. biol., 106:5 (2001), 51–58
[14] Ulanova N. G., Demidova A. N., Logofet D. O., Klochkova I. N., “Struktura i dinamika tsenopopulyatsii veinika sedeyuschego Calamagrostis canescens: modelnyi podkhod”, Zhurn. obsch. biol., 63:6 (2002), 509–521
[15] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Nauka, M., 1970
[16] Akcakaya R. H., Burgman M. A., Ginzburg L. R., Applied Population Ecology: Principles and Computer Exercises Using RAMAS EcoLab 2.0, Sinauer, Sunderland, 1999
[17] Bernardelli H., “Population waves”, J. Burma Research Soc., 31 (1941), 1–18
[18] Brewster-Geisz K. K., Miller T. J., “Management of the sandbar shark, Carcharhinus plumbeus: implications of a stage-based model”, Fish. Bull., 98 (2000), 236–249
[19] De Camino-Beck T., Lewis M. A., “On net reproductive rate and the timing of reproductive output”, Am. Naturalist, 172:1 (2008), 128–139 | DOI
[20] Caswell H., Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer, Sunderland, 1989
[21] Caswell H., Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates, Sunderland, 2001
[22] Csetenyi A. I., Logofet D. O., “Leslie model revisited: Some generalizations for block structures”, Ecological Modelling, 48 (1989), 277–290 | DOI
[23] Cull P., Vogt A., “The periodic limits for the Leslie model”, Math. Biosci., 21 (1974), 39–54 | DOI | MR | Zbl
[24] Cushing J. M., Yicang Z., “The net reproductive value and stability in matrix population models”, Natural Resources Modeling, 8 (1994), 297–333
[25] Geramita J. M., Pullman N. J., An Introduction to the Application of Nonnegative Matrices to Biological Systems, Queen's Papers Pure Appl. Math., 68, Queen's Univ., Kingston, Ontario, Canada, 1984 | MR | Zbl
[26] Goodman L. A., “The analysis of population growth when the birth and death rates depend upon several factors”, Biometrics, 25 (1969), 659–681 | DOI | MR
[27] Hansen P. E., “Leslie matrix models: A mathematical survey”, Papers on Mathematical Ecology, v. I, ed. A. I. Csetenyi, Karl Marx Univ. of Economics, Budapest, 1986, 54–106 | MR
[28] Harary F., Norman R. Z., Cartwright D., Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York, 1965 | MR | Zbl
[29] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, London, 1990 | MR | Zbl
[30] Impagliazzo J., Deterministic Aspects of Mathematical Demography: An Investigation of Stable Population Theory Including an Analysis of the Population Statistics of Denmark, Biomathematics, 13, Springer, Berlin, 1985 | MR
[31] Lefkovitch L. P., “The study of population growth in organisms grouped by stages”, Biometrics, 21 (1965), 1–18 | DOI
[32] Leslie P. H., “On the use of matrices in certain population mathematics”, Biometrika, 33 (1945), 183–212 | DOI | MR | Zbl
[33] Lewis E. G., “On the generation and growth of a population”, Sankhya: The Indian J. Statistics, 6 (1942), 93–96
[34] Li C.-K., Schneider H., “Application of Perron–Frobenius theory to population dynamics”, J. Math. Biol., 44 (2002), 450–462 | DOI | MR | Zbl
[35] Logofet D. O., Matrices and Graphs: Stability Problems in Mathematical Ecology, CRC Press, Boca Raton, 1993
[36] Logofet D. O., “Convexity in projection matrices: projection to a calibration problem”, Ecological Modelling, 216 (2008), 217–228 | DOI
[37] Logofet D. O., Ulanova N. G., Klochkova I. N., Demidova A. N., “Structure and dynamics of a clonal plant population: Classical model results in a non-classic formulation”, Ecological Modelling, 192 (2006), 95–106 | DOI
[38] Maybee J. S., Olesky D. D., van den Driessche P., Wiener G., “Matrices, digraphs, and determinants”, SIAM J. Matrix Anal. Appl., 10 (1989), 500–519 | DOI | MR | Zbl
[39] Romanovsky V., “Un théorème sur les zeros des matrices non négatives”, Bull. Soc. Math. France, 61 (1933), 213–219 | MR | Zbl
[40] Salguero-Gómez R., Casper B. B., “Keeping plant shrinkage in the demographic loop”, J. Ecology, 98:2 (2010), 312–323 | DOI
[41] Salguero-Gómez R., de Kroon H., “Matrix projection models meet variation in the real world”, J. Ecology, 98 (2010), 250–254 | DOI
[42] Seneta E., Non-Negative Matrices and Markov Chains, Springer, New York, 1981 | MR | Zbl
[43] Ulanova N. G., “Plant age stages during succession in woodland clearing in central Russia”, Vegetation Science in Retrospect and Perspective, Opulus, Uppsala, 2000, 80–83