Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_6_a1, author = {M. A. Efimov}, title = {Additive matrix maps that are monotone with respect to the orders induced by group inverse}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {23--40}, publisher = {mathdoc}, volume = {17}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a1/} }
TY - JOUR AU - M. A. Efimov TI - Additive matrix maps that are monotone with respect to the orders induced by group inverse JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 23 EP - 40 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a1/ LA - ru ID - FPM_2012_17_6_a1 ER -
M. A. Efimov. Additive matrix maps that are monotone with respect to the orders induced by group inverse. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 23-40. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a1/
[1] Bogdanov I. I., Guterman A. E., “Monotonnye otobrazheniya matrits, zadannye gruppovoi obratnoi, i odnovremennaya diagonalizuemost”, Mat. sb., 198:1 (2007), 3–20 | DOI | MR | Zbl
[2] Efimov M. A., “Lineinye otobrazheniya matrits, monotonnye otnositelno poryadkov $\overset\sharp\leq$ i $\overset{\mathrm{cn}}\leq$”, Fundament. i prikl. mat., 13:4 (2007), 53–66 | MR | Zbl
[3] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR
[4] Alieva A., Guterman A., “Monotone linear transformations on matrices are invertible”, Commun. Algebra, 33 (2005), 3335–3352 | DOI | MR | Zbl
[5] Baksalary J. K., Pukelsheim F., Styan G. P. H., “Some properties of matrix partial orderings”, Linear Algebra Appl., 119 (1989), 57–85 | DOI | MR | Zbl
[6] Ben-Israel A., Greville T., Generalized Inverses: Theory and Applications, John Wiley and Sons, New York, 1974 | MR | Zbl
[7] Englefield M. J., “The commuting inverses of a square matrix”, Proc. Cambridge Philos. Soc., 62 (1966), 667–671 | DOI | MR | Zbl
[8] Erdelyi I., “On the matrix equation $Ax=\lambda Bx$”, J. Math. Anal. Appl., 17 (1967), 117–132 | DOI | MR
[9] Guterman A., “Linear preservers for Drazin star partial order”, Commun. Algebra, 29:9 (2001), 3905–3917 | DOI | MR | Zbl
[10] Guterman A., “Linear preservers for matrix inequalities and partial orderings”, Linear Algebra Appl., 331:1–3 (2001), 75–87 | DOI | MR | Zbl
[11] Hartwig R. E., “How to partially order regular elements”, Math. Japon., 25:1 (1980), 1–13 | MR | Zbl
[12] Hartwig R. E., Mitra S. K., “Partial orders based on outer inverses”, Linear Algebra Appl., 176 (1982), 3–20 | MR
[13] Legiša P., “Automorphisms of $\mathrm M_n$, partially ordered by rank subtractivity ordering”, Linear Algebra Appl., 389 (2004), 147–158 | DOI | MR | Zbl
[14] Legiša P., “Automorphisms of $\mathrm M_n$, partially ordered by the star order”, Linear and Multilinear Algebra, 54:3 (2006), 157–188 | DOI | MR | Zbl
[15] Mitra S. K., “A new class of g-inverse of square matrices”, Sankhyā Ser. A, 30 (1963), 323–330 | MR
[16] Mitra S. K., “On group inverses and the sharp order”, Linear Algebra Appl., 92 (1987), 17–37 | DOI | MR | Zbl
[17] Nambooripad K. S. S., “The natural partial order on a regular semigroup”, Proc. Edinburgh Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl
[18] Ovchinnikov P. G., “Automorphisms of the poset of skew projections”, J. Funct. Anal., 115 (1993), 184–189 | DOI | MR | Zbl
[19] Pierce S. et al., “A survey of linear preserver problems”, Linear and Multilinear Algebra, 33 (1992), 1–119 | DOI | Zbl
[20] De Pillis J., “Linear transformations which preserve Hermitian and positive semidefinite operators”, Pacific J. Math., 23 (1967), 129–137 | DOI | MR | Zbl
[21] Rao C. R., Mitra S. K., Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971 | MR | Zbl
[22] Robert P., “On the group-inverse of a linear transformation”, J. Math. Anal. Appl., 22 (1968), 658–669 | DOI | MR | Zbl
[23] Šemrl P., “Order-preserving maps on the poset of idempotent matrices”, Acta Sci. Math. (Szeged), 69 (2003), 481–490 | MR | Zbl