Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is a survey of recent results concerning optimization problems whose set of feasible solutions is described by a finite system of so-called $(\max,\min)$-linear equations and/or inequalities. The objective function is equal to the maximum of a finite number of continuous unimodal functions $f_j\colon R\to R$ each depending on one variable $x_j\in R=(-\infty,+\infty)$. Motivation problems from the area of operations research, illustrative numerical examples, and hints for further research are included.
@article{FPM_2012_17_6_a0,
     author = {M. Gavalec and M. Gad and K. Zimmermann},
     title = {Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a0/}
}
TY  - JOUR
AU  - M. Gavalec
AU  - M. Gad
AU  - K. Zimmermann
TI  - Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 3
EP  - 21
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a0/
LA  - ru
ID  - FPM_2012_17_6_a0
ER  - 
%0 Journal Article
%A M. Gavalec
%A M. Gad
%A K. Zimmermann
%T Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 3-21
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a0/
%G ru
%F FPM_2012_17_6_a0
M. Gavalec; M. Gad; K. Zimmermann. Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a0/