Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 3-21
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is a survey of recent results concerning optimization problems whose set of feasible solutions is described by a finite system of so-called $(\max,\min)$-linear equations and/or inequalities. The objective function is equal to the maximum of a finite number of continuous unimodal functions $f_j\colon R\to R$ each depending on one variable $x_j\in R=(-\infty,+\infty)$. Motivation problems from the area of operations research, illustrative numerical examples, and hints for further research are included.
@article{FPM_2012_17_6_a0,
author = {M. Gavalec and M. Gad and K. Zimmermann},
title = {Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--21},
publisher = {mathdoc},
volume = {17},
number = {6},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a0/}
}
TY - JOUR AU - M. Gavalec AU - M. Gad AU - K. Zimmermann TI - Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 3 EP - 21 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a0/ LA - ru ID - FPM_2012_17_6_a0 ER -
%0 Journal Article %A M. Gavalec %A M. Gad %A K. Zimmermann %T Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 3-21 %V 17 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a0/ %G ru %F FPM_2012_17_6_a0
M. Gavalec; M. Gad; K. Zimmermann. Optimization problems under $(\max,\min)$-linear equation and/or inequality constraints. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a0/