The Heisenberg envelope for the Hochschild algebra of a~finite-dimensional Lie algebra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 147-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some kind of Hopf algebra assigned to any finite-dimensional Lie algebra. This algebra was pointed out by Hochschild. We prove several statements on its embeddings into an algebra of formal power series. In particular, we obtain similar results for Lie algebras. More precisely, a Lie algebra can be embedded into a Lie algebra of special derivations with coefficients in rational functions in (quasi)polynomials.
@article{FPM_2012_17_5_a8,
     author = {Yu. P. Razmyslov and G. A. Pogudin},
     title = {The {Heisenberg} envelope for the {Hochschild} algebra of a~finite-dimensional {Lie} algebra},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {147--155},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a8/}
}
TY  - JOUR
AU  - Yu. P. Razmyslov
AU  - G. A. Pogudin
TI  - The Heisenberg envelope for the Hochschild algebra of a~finite-dimensional Lie algebra
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 147
EP  - 155
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a8/
LA  - ru
ID  - FPM_2012_17_5_a8
ER  - 
%0 Journal Article
%A Yu. P. Razmyslov
%A G. A. Pogudin
%T The Heisenberg envelope for the Hochschild algebra of a~finite-dimensional Lie algebra
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 147-155
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a8/
%G ru
%F FPM_2012_17_5_a8
Yu. P. Razmyslov; G. A. Pogudin. The Heisenberg envelope for the Hochschild algebra of a~finite-dimensional Lie algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 147-155. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a8/

[1] Gelfand I. M., Kirillov A. A., “O telakh, svyazannykh s obërtyvayuschimi algebrami Li”, DAN SSSR, 167:3 (1966), 503–506 | MR

[2] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[3] Diksme Zh., Universalnye obërtyvayuschie algebry, Mir, M., 1978 | MR

[4] Pankratev E. V., Razmyslov Yu. P., “Geizenbergovy obolochki veile-uottonovskikh podalgebr”, Tezisy dokladov Mezhdunarodnoi algebraicheskoi konferentsii, posvyaschënnoi 250-letiyu Moskovskogo un-ta, Izd-vo mekh.-mat. f-ta MGU, M., 2004

[5] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR | Zbl

[6] Razmyslov Yu. P., Vvedenie v teoriyu algebr i ikh predstavlenii, Izd-vo Mosk. un-ta, 1991

[7] Razmyslov Yu. P., “Paradigma maks-faktora”, Tezisy dokladov Mezhdunarodnoi algebraicheskoi konferentsii, posvyaschënnoi 250-letiyu Moskovskogo un-ta, Izd-vo mekh.-mat. f-ta MGU, M., 2004

[8] Razmyslov Yu. P., Pogudin G. A., “Paradigma maks-faktora i konechnomernye predstavleniya algebr Li”, Vestnik Moskovskogo universiteta. Ser. 1. Matematika. Mekhanika, 2012, no. 4, 48–50 | MR | Zbl

[9] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[10] Hochschild G., “Algebraic Lie algebras and representative functions”, Illinois J. Math., 3:4 (1959), 499–523 | MR | Zbl

[11] Hochschild G., “Algebraic groups and Hopf algebras”, Illinois J. Math., 14:1 (1970), 52–65 | MR | Zbl

[12] Montgomery S., Hopf Algebras and Their Actions on Rings, Regional Conf. Ser. Math., 82, Amer. Math. Soc., Providence, 1993 | MR | Zbl