Framed moduli spaces and tuples of operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 187-209

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we address the classical problem of classifying tuples of linear operators and linear functions on a finite-dimensional vector space up to base change. Having adopted for the situation considered a construction of framed moduli spaces of quivers, we develop an explicit classification of tuples belonging to a Zariski open subset. For such tuples we provide a finite family of normal forms and a procedure allowing one to determine whether two tuples are equivalent.
@article{FPM_2012_17_5_a12,
     author = {S. N. Fedotov},
     title = {Framed moduli spaces and tuples of operators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {187--209},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a12/}
}
TY  - JOUR
AU  - S. N. Fedotov
TI  - Framed moduli spaces and tuples of operators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 187
EP  - 209
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a12/
LA  - ru
ID  - FPM_2012_17_5_a12
ER  - 
%0 Journal Article
%A S. N. Fedotov
%T Framed moduli spaces and tuples of operators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 187-209
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a12/
%G ru
%F FPM_2012_17_5_a12
S. N. Fedotov. Framed moduli spaces and tuples of operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 187-209. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a12/