Framed moduli spaces and tuples of operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 187-209
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we address the classical problem of classifying tuples of linear operators and linear functions on a finite-dimensional vector space up to base change. Having adopted for the situation considered a construction of framed moduli spaces of quivers, we develop an explicit classification of tuples belonging to a Zariski open subset. For such tuples we provide a finite family of normal forms and a procedure allowing one to determine whether two tuples are equivalent.
@article{FPM_2012_17_5_a12,
author = {S. N. Fedotov},
title = {Framed moduli spaces and tuples of operators},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {187--209},
publisher = {mathdoc},
volume = {17},
number = {5},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a12/}
}
S. N. Fedotov. Framed moduli spaces and tuples of operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 187-209. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a12/