Subexponential estimates in the height theorem and estimates on numbers of periodic parts of small periods
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 21-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to subexponential estimates in Shirshov's height theorem. A word $W$ is $n$-divisible if it can be represented in the form $W=W_0W_1\cdots W_n$, where $W_1\prec W_2\prec\dots\prec W_n$. If an affine algebra $A$ satisfies a polynomial identity of degree $n$, then $A$ is spanned by non $n$-divisible words of generators $a_1\prec\dots\prec a_l$. A. I. Shirshov proved that the set of non $n$-divisible words over an alphabet of cardinality $l$ has bounded height $h$ over the set $Y$ consisting of all words of degree $\leq n-1$. We show that $h\Phi(n,l)$, where $\Phi(n,l)=2^{87}l\cdot n^{12\log_3n+48}$. Let $l,n$, and $d\geq n$ be positive integers. Then all words over an alphabet of cardinality $l$ whose length is greater than $\Psi(n,d,l)$ are either $n$-divisible or contain the $d$th power of a subword, where $\Psi(n,d,l)=2^{18}l(nd)^{3\log_3(nd)+13}d^2$. In 1993, E. I. Zelmanov asked the following question in the Dniester Notebook: Suppose that $F_{2, m}$ is a $2$-generated associative ring with the identity $x^m=0$. Is it true that the nilpotency degree of $F_{2,m}$ has exponential growth? We give the definitive answer to E. I. Zelmanov by this result. We show that the nilpotency degree of the $l$-generated associative algebra with the identity $x^d=0$ is smaller than $\Psi(d,d,l)$. This implies subexponential estimates on the nilpotency index of nil-algebras of arbitrary characteristic. Shirshov's original estimate was just recursive, in 1982 double exponent was obtained, and an exponential estimate was obtained in 1992. Our proof uses Latyshev's idea of an application of the Dilworth theorem. We think that Shirshov's height theorem is deeply connected to problems of modern combinatorics. In particular, this theorem is related to the Ramsey theory. We obtain lower and upper estimates of the number of periods of length $2,3,n-1$ in some non $n$-divisible word. These estimates differ only by a constant.
@article{FPM_2012_17_5_a1,
     author = {A. Ya. Belov and M. I. Kharitonov},
     title = {Subexponential estimates in the height theorem and estimates on numbers of periodic parts of small periods},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {21--54},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a1/}
}
TY  - JOUR
AU  - A. Ya. Belov
AU  - M. I. Kharitonov
TI  - Subexponential estimates in the height theorem and estimates on numbers of periodic parts of small periods
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 21
EP  - 54
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a1/
LA  - ru
ID  - FPM_2012_17_5_a1
ER  - 
%0 Journal Article
%A A. Ya. Belov
%A M. I. Kharitonov
%T Subexponential estimates in the height theorem and estimates on numbers of periodic parts of small periods
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 21-54
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a1/
%G ru
%F FPM_2012_17_5_a1
A. Ya. Belov; M. I. Kharitonov. Subexponential estimates in the height theorem and estimates on numbers of periodic parts of small periods. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 21-54. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a1/

[1] Belov A. Ya., “O bazise Shirshova otnositelno svobodnykh algebr slozhnosti $n$”, Mat. sb., 135(177):31 (1988), 373–384 | MR | Zbl

[2] Belov A. Ya., “O ratsionalnosti ryadov Gilberta otnositelno svobodnykh algebr”, Uspekhi mat. nauk, 52:2 (1997), 153–154 | DOI | MR | Zbl

[3] Belov A. Ya., “Razmernost Gelfanda–Kirillova otnositelno svobodnykh assotsiativnykh algebr”, Mat. sb., 195:12 (2004), 3–26 | DOI | MR | Zbl

[4] Belov A. Ya., “Problemy bernsaidovskogo tipa, teoremy o vysote i o nezavisimosti”, Fundament. i prikl. mat., 13:5 (2007), 19–79 | MR | Zbl

[5] Belov A. Ya., Kharitonov M. I., “Subeksponentsialnye otsenki v teoreme Shirshova o vysote”, Mat. sb., 203:4 (2012), 81–102, arXiv: 1101.4909 | DOI | MR | Zbl

[6] Bogdanov I. I., “Teorema Nagaty–Khigmana dlya polukolets”, Fundament. i prikl. mat., 7:3 (2001), 651–658 | MR | Zbl

[7] Dnestrovskaya tetrad, Operativno-inform. sb., Izd-vo In-ta mat. SO AN SSSR, Novosibirsk, 1993 | MR

[8] Kolotov A. G., “O verkhnei otsenke vysoty v konechno porozhdënnykh algebrakh s tozhdestvami”, Sib. mat. zhurn., 23:1 (1982), 187–189 | MR | Zbl

[9] Kuzmin E. N., “O teoreme Nagaty–Khigmana”, Sb. trudov, posvyaschënnyi 60-letiyu akad. Ilieva, Sofiya, 1975, 101–107

[10] Latyshev V. N., “Kombinatornye porozhdayuschie polilineinykh polinomialnykh tozhdestv”, Fundament. i prikl. mat., 12:2 (2006), 101–110 | MR | Zbl

[11] Mischenko S. P., “Variant teoremy o vysote dlya algebr Li”, Mat. zametki, 47:4 (1990), 83–89 | MR | Zbl

[12] Pchelintsev S. V., “Teorema o vysote dlya alternativnykh algebr”, Mat. sb., 124(166):4 (1984), 557–567 | MR | Zbl

[13] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR | Zbl

[14] Ufnarovskii V. A., “Teorema o nezavisimosti i eë sledstviya”, Mat. sb., 128(170):1(9) (1985), 124–132 | MR | Zbl

[15] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 57, 1990, 5–177 | MR | Zbl

[16] Kharitonov M. I., “Dvustoronnie otsenki suschestvennoi vysoty v teoreme Shirshova o vysote”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 2, 24–28 | MR

[17] Kharitonov M. I., “Otsenki na strukturu kusochnoi periodichnosti v teoreme Shirshova o vysote”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika (to appear)

[18] Chibrikov E. S., “O vysote Shirshova konechnoporozhdënnoi assotsiativnoi algebry, udovletvoryayuschei tozhdestvu stepeni chetyre”, Izv. Altaisk. gos. un-ta, 2001, no. 1(19), 52–56 | Zbl

[19] Shirshov A. I., “O koltsakh s tozhdestvennymi sootnosheniyami”, Mat. sb., 43(85):2 (1957), 277–283 | MR | Zbl

[20] Shirshov A. I., “O nekotorykh neassotsiativnykh nil-koltsakh i algebraicheskikh algebrakh”, Mat. sb., 41(83):3 (1957), 381–394 | MR | Zbl

[21] Belov A. Ya., “Some estimations for nilpotency of nil-algebras over a field of an arbitrary characteristic and height theorem”, Commun. Algebra, 20:10 (1992), 2919–2922 | DOI | MR | Zbl

[22] Belov A. Ya., Borisenko V. V., Latyshev V. N., “Monomial algebras”, J. Math. Sci., 87:3 (1997), 3463–3575 | DOI | MR | Zbl

[23] Belov A. Ya., Rowen L. H., Computational Aspects of Polynomial Identities, Research Notes Math., 9, Peters, Wellesley, 2005 | MR | Zbl

[24] Berstel J., Perrin D., “The origins of combinatorics on words”, European J. Combin., 28 (2007), 996–1022 | DOI | MR | Zbl

[25] Ciocanu Gh., “Independence and quasiregularity in algebras. II”, Izv. Akad. Nauk Respub. Moldova Mat., 1997, no. 1, 70–77, 132, 134 | MR

[26] Chekanu Gh., “Local finiteness of algebras”, Mat. Issled., 105 (1988), 153–171, 198 | MR | Zbl

[27] Chekanu G. P., Kozhukhar E. P., “Independence and nilpotency in algebras”, Izv. Akad. Nauk Respub. Moldova Mat., 1993, no. 2, 51–62, 92–93, 95 | MR | Zbl

[28] Chekanu G. P., “Independence and quasiregularity in algebras”, Dokl. Akad. Nauk, 337:3 (1994), 316–319 | MR | Zbl

[29] Drensky V., Free Algebras and PI-Algebras: Graduate Course in Algebra, Springer, Singapore, 2000 | MR | Zbl

[30] Drensky V., Formanek E., Polynomial Identity Ring, Adv. Courses Math., Birkhäuser, Basel, 2004 | MR | Zbl

[31] Kanel-Belov A., Rowen L. H., “Perspectives on Shirshov's height theorem”, Selected Papers of A. I. Shirshov, Birkhäuser, Basel, 2009, 3–20

[32] Kemer A. R., “Comments on the Shirshov's height theorem”, Selected Papers of A. I. Shirshov, Birkhäuser, Basel, 2009, 41–48

[33] Kharitonov M., Estimations of the particular periodicity in case of the small periods in Shirshov height theorem, arXiv: 1108.6295

[34] Klein A. A., “Indices of nilpotency in a PI-ring”, Arch. Math., 44:4 (1985), 323–329 | DOI | MR | Zbl

[35] Klein A. A., “Bounds for indices of nilpotency and nility”, Arch. Math., 74:1 (2000), 6–10 | DOI | MR | Zbl

[36] Latyshev V. N., “On Regev's theorem on indentities in a tensor product of PI-algebras”, Usp. Mat. Nauk, 27:4 (1972), 213–214 | MR | Zbl

[37] Lopatin A. A., On the nilpotency degree of the algebra with identity $x^n=0$, arXiv: 1106.0950

[38] Lothaire M., Algebraic Combinatorics on Words, Encycl. Math. Its Appl., 90, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[39] Procesi C., Rings with Polynomial Identities, New York, 1973 | MR | Zbl

[40] Ufnarovskii V. A., Chekanu G. P., “Nilpotent matrices”, Mat. Issled., 85 (1985), 130–141, 155 | MR

[41] Zelmanov E., “On the nilpotency of nil algebras”, Proc. 5th Nat. School in Algebra Held (Varna, Bulgaria, Sept. 24 – Oct. 4, 1986), Lect. Notes Math., 1352, eds. L. L. Avramov, K. B. Tchakerian, Springer, Berlin, 1988, 227–240 | DOI | MR