Weakly regular semigroups of isotone transformations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 145-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a partially ordered set and $O(X)$ be the semigroup of all mappings $X\to X$ that preserve the order, i.e., $x\leq y\Longrightarrow x\alpha\leq y\alpha$ for all $x,y\in X$. It is proved that the semigroup $O(X)$ is weakly regular in the wide sense if and only if at least one of the following conditions holds: (1) $X$ is a quasi-complete chain; (2) the elements of $X$ are not comparable pairwise; (3) $X=Y\cup Z$, where $y$ for $y\in Y$, $z\in Z$; (4) $X=Y\cup Z$, where $y_0\in Y$, $z_0\in Z$, and $y_0$ for $z\in Z$, $y$ for $y\in Y$; (5) $X=\{a,c\}\cup B$, where $a$ for $b\in B$; (6) $X=\{1,2,3,4,5,6\}$, where $14$, $15$, $25$, $26$, $34$, $36$. Moreover, if $X$ is a quasi-ordered set but not partially ordered, then the semigroup $O(X)$ is weakly regular in the wide sense if and only if $x\leq y$ for all $x,y\in X$.
@article{FPM_2012_17_4_a8,
     author = {V. I. Kim and I. B. Kozhukhov and V. A. Yaroshevich},
     title = {Weakly regular semigroups of isotone transformations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {145--165},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a8/}
}
TY  - JOUR
AU  - V. I. Kim
AU  - I. B. Kozhukhov
AU  - V. A. Yaroshevich
TI  - Weakly regular semigroups of isotone transformations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 145
EP  - 165
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a8/
LA  - ru
ID  - FPM_2012_17_4_a8
ER  - 
%0 Journal Article
%A V. I. Kim
%A I. B. Kozhukhov
%A V. A. Yaroshevich
%T Weakly regular semigroups of isotone transformations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 145-165
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a8/
%G ru
%F FPM_2012_17_4_a8
V. I. Kim; I. B. Kozhukhov; V. A. Yaroshevich. Weakly regular semigroups of isotone transformations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 145-165. http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a8/

[1] Aizenshtat A. Ya., “Opredelyayuschie sootnosheniya polugruppy endomorfizmov konechnogo lineino uporyadochennogo mnozhestva”, Sib. mat. zhurn., 3:2 (1962), 161–169 | Zbl

[2] Aizenshtat A. Ya., “Regulyarnye polugruppy endomorfizmov uporyadochennykh mnozhestv”, Uchënye zapiski Leningr. gos. ped. in-ta im. A. I. Gertsena, 387, 1968, 3–11 | MR

[3] Vazhenin Yu. M., “Elementarnye svoistva polugrupp preobrazovanii uporyadochennykh mnozhestv”, Algebra i logika, 7:3 (1970), 339–347

[4] Gluskin L. M., “Polugruppy izotonnykh preobrazovanii”, Uspekhi mat. nauk, 16:5 (1961), 157–162 | MR | Zbl

[5] Kim V. I., Kozhukhov I. B., “Usloviya regulyarnosti polugrupp izotonnykh preobrazovanii schëtnykh tsepei”, Fundament. i prikl. mat., 12:8 (2006), 97–104 | MR | Zbl

[6] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, 2, Mir, M., 1972 | Zbl

[7] Lyapin E. S., “Abstraktnaya kharakteristika klassa polugrupp endomorfizmov sistem obschego vida”, Mat. sb., 70(112):2 (1966), 172–179 | MR | Zbl

[8] Skornyakov L. A., “O monoidakh izotonnykh otobrazhenii”, Mat. sb., 123(165):1 (1984), 50–68 | MR | Zbl

[9] Yaroshevich V. A., “Otobrazheniya, soglasuyuschiesya s binarnymi otnosheniyami”, Mat. vestn. pedvuz. i univ. Volgo-Vyatskogo reg., 2009, no. 11, 135–142

[10] Adams M. E., Gould M., “Posets whose monoids of order-preserving maps are regular”, Order, 6:2 (1989), 195–201 | DOI | MR | Zbl

[11] Higgins P. M., Mitchell J. D., Ruškuc N., “Generating the full transformation semigroup using order preserving mappings”, Glasgow Math. J., 45 (2003), 557–566 | DOI | MR | Zbl

[12] Krokhin A., Larose B., “A monoidal interval of isotone clones on a finite chain”, Acta Sci. Math. (Szeged), 68:1–2 (2001), 37–62 | MR

[13] Laradji A., Umar A., Combinatorial results for semigroups of order-preserving partial transformations, Tech. Report Ser., King Fahd Univ. of Petroleum Minerals (Saudi Arabia), Dept. Math. Sci., 2004

[14] Larose B., “A completeness criterion for isotone operations on a finite chain”, Acta Sci. Math. (Szeged), 59:3–4 (1994), 319–356 | MR | Zbl

[15] Schein B. M., “Products of idempotent order-preserving transformations of arbitrary chains”, Semigroup Forum, 11:1 (1975), 297–309 | DOI | MR

[16] Umar A., “On the ranks of certain finite semigroups of order-decreasing transformations”, Portugal. Math., 53:1 (1996), 23–34 | MR | Zbl