Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_4_a8, author = {V. I. Kim and I. B. Kozhukhov and V. A. Yaroshevich}, title = {Weakly regular semigroups of isotone transformations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {145--165}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a8/} }
TY - JOUR AU - V. I. Kim AU - I. B. Kozhukhov AU - V. A. Yaroshevich TI - Weakly regular semigroups of isotone transformations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 145 EP - 165 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a8/ LA - ru ID - FPM_2012_17_4_a8 ER -
V. I. Kim; I. B. Kozhukhov; V. A. Yaroshevich. Weakly regular semigroups of isotone transformations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 145-165. http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a8/
[1] Aizenshtat A. Ya., “Opredelyayuschie sootnosheniya polugruppy endomorfizmov konechnogo lineino uporyadochennogo mnozhestva”, Sib. mat. zhurn., 3:2 (1962), 161–169 | Zbl
[2] Aizenshtat A. Ya., “Regulyarnye polugruppy endomorfizmov uporyadochennykh mnozhestv”, Uchënye zapiski Leningr. gos. ped. in-ta im. A. I. Gertsena, 387, 1968, 3–11 | MR
[3] Vazhenin Yu. M., “Elementarnye svoistva polugrupp preobrazovanii uporyadochennykh mnozhestv”, Algebra i logika, 7:3 (1970), 339–347
[4] Gluskin L. M., “Polugruppy izotonnykh preobrazovanii”, Uspekhi mat. nauk, 16:5 (1961), 157–162 | MR | Zbl
[5] Kim V. I., Kozhukhov I. B., “Usloviya regulyarnosti polugrupp izotonnykh preobrazovanii schëtnykh tsepei”, Fundament. i prikl. mat., 12:8 (2006), 97–104 | MR | Zbl
[6] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, 2, Mir, M., 1972 | Zbl
[7] Lyapin E. S., “Abstraktnaya kharakteristika klassa polugrupp endomorfizmov sistem obschego vida”, Mat. sb., 70(112):2 (1966), 172–179 | MR | Zbl
[8] Skornyakov L. A., “O monoidakh izotonnykh otobrazhenii”, Mat. sb., 123(165):1 (1984), 50–68 | MR | Zbl
[9] Yaroshevich V. A., “Otobrazheniya, soglasuyuschiesya s binarnymi otnosheniyami”, Mat. vestn. pedvuz. i univ. Volgo-Vyatskogo reg., 2009, no. 11, 135–142
[10] Adams M. E., Gould M., “Posets whose monoids of order-preserving maps are regular”, Order, 6:2 (1989), 195–201 | DOI | MR | Zbl
[11] Higgins P. M., Mitchell J. D., Ruškuc N., “Generating the full transformation semigroup using order preserving mappings”, Glasgow Math. J., 45 (2003), 557–566 | DOI | MR | Zbl
[12] Krokhin A., Larose B., “A monoidal interval of isotone clones on a finite chain”, Acta Sci. Math. (Szeged), 68:1–2 (2001), 37–62 | MR
[13] Laradji A., Umar A., Combinatorial results for semigroups of order-preserving partial transformations, Tech. Report Ser., King Fahd Univ. of Petroleum Minerals (Saudi Arabia), Dept. Math. Sci., 2004
[14] Larose B., “A completeness criterion for isotone operations on a finite chain”, Acta Sci. Math. (Szeged), 59:3–4 (1994), 319–356 | MR | Zbl
[15] Schein B. M., “Products of idempotent order-preserving transformations of arbitrary chains”, Semigroup Forum, 11:1 (1975), 297–309 | DOI | MR
[16] Umar A., “On the ranks of certain finite semigroups of order-decreasing transformations”, Portugal. Math., 53:1 (1996), 23–34 | MR | Zbl