Paragraded rings and their ideals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 83-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of a paragraded ring and a homogeneous ideal, which are at the same time a generalization of the classical graduation, as defined by Bourbaki, and an extension of the earlier work done by M. Krasner, were introduced by M. Krasner and M. Vuković. After recalling the notion of paragraded rings, we list out and prove several facts about them. One of the most important properties is that the homogeneous part of the direct product and the direct sum of paragraded rings are the direct product and the direct sum of the corresponding homogeneous parts, respectively. Next we give the notion of a homogeneous ideal of a paragraded ring and prove that the factor ring obtained from a paragraded ring and its homogeneous ideal is also a paragraded ring. After that, we deal with basic facts about homogeneous ideals.
@article{FPM_2012_17_4_a4,
     author = {M. Vukovi\'c and E. Ili\'c-Georgijevi\'c},
     title = {Paragraded rings and their ideals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {83--93},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a4/}
}
TY  - JOUR
AU  - M. Vuković
AU  - E. Ilić-Georgijević
TI  - Paragraded rings and their ideals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 83
EP  - 93
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a4/
LA  - ru
ID  - FPM_2012_17_4_a4
ER  - 
%0 Journal Article
%A M. Vuković
%A E. Ilić-Georgijević
%T Paragraded rings and their ideals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 83-93
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a4/
%G ru
%F FPM_2012_17_4_a4
M. Vuković; E. Ilić-Georgijević. Paragraded rings and their ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 83-93. http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a4/

[1] Bourbaki N., Algèbre, Chap. II, Hermann, Paris, 1962 | Zbl

[2] Chadeyras M., “Essai d'une théorie noetherienne pour les anneaux commutatifs, dont la graduation est aussi générale que possible”, Suppl. Bull. Soc. Math. Fr. Mémoire, 22 (1970), 1–143 | MR

[3] Ilić-Georgijević E., Paragraduirane strukture (grupe, prsteni i moduli), magistarski rad., Univerzitet u Istočnom Sarajevu, 2009

[4] Krasner M., “Anneaux gradués généraux”, Colloque d'Algébre Rennes, Univ. Rennes, 1980, 209–308 | MR | Zbl

[5] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules). I”, Proc. Japan Acad. Ser. A, 62:9 (1986), 350–352 | DOI | MR | Zbl

[6] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules). II”, Proc. Japan Acad. Ser. A, 62:10 (1986), 389–391 | DOI | MR | Zbl

[7] Krasner M., Vuković M., “Structures paragraduées (groupes, anneaux, modules). III”, Proc. Japan Acad. Ser. A, 63:1 (1987), 10–12 | DOI | MR | Zbl

[8] Krasner M., Vuković M., Structures paragraduées (groupes, anneaux, modules), Queen's Papers in Pure and Applied Mathematics, 77, Queen's University, Kingston, Ontario, Canada, 1987 | MR | Zbl

[9] Nǎstǎsescu C., Van Oystaeyen F., Methods of Graded Rings, Springer, Berlin, 2004 | MR

[10] Perić V., Algebra, v. I, Svjetlost, Sarajevo, 1991

[11] Rotman J. J., An Introduction to Homological Algebra, Springer, Berlin, 2009 | MR | Zbl

[12] Vuković M., Structures graduées et paragraduées, Prepublication No 536, l'Institut Fourier, Université de Grenoble I, 2001