An explanation to ``Rolling simplexes and their commensurability'' (field equations in accordance with Tycho Brahe)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 193-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various Cartesian models of central power fields with quadratic dynamics are studied. These examples lead the reader to comprehension of basic aspects of the differential algebraic-geometrical Brahe–Descartes–Wotton theory, which embraces central power fields whose dynamics is composed of flat affine algebraic curves of degree at most $N$ ($N=1,2,3,\dots$). When $N=2$, a quadratic rolling simplex law is proved by purely algebraic means.
@article{FPM_2012_17_4_a11,
     author = {Yu. P. Razmyslov},
     title = {An explanation to {``Rolling} simplexes and their commensurability'' (field equations in accordance with {Tycho} {Brahe)}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--215},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a11/}
}
TY  - JOUR
AU  - Yu. P. Razmyslov
TI  - An explanation to ``Rolling simplexes and their commensurability'' (field equations in accordance with Tycho Brahe)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 193
EP  - 215
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a11/
LA  - ru
ID  - FPM_2012_17_4_a11
ER  - 
%0 Journal Article
%A Yu. P. Razmyslov
%T An explanation to ``Rolling simplexes and their commensurability'' (field equations in accordance with Tycho Brahe)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 193-215
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a11/
%G ru
%F FPM_2012_17_4_a11
Yu. P. Razmyslov. An explanation to ``Rolling simplexes and their commensurability'' (field equations in accordance with Tycho Brahe). Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 193-215. http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a11/

[1] Veil G., Klassicheskie gruppy. Ikh invarianty i predstavleniya, Izd. inostr. lit., M., 1947

[2] Gerasimova O. V., “Spektr kommutatornogo gamiltoniana vodorodopodoben”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 6, 71–74 | MR

[3] Gerasimova O. V., “Spektr kommutatornogo gamiltoniana srodni energeticheskim urovnyam atoma vodoroda”, Uspekhi mat. nauk, 64:4 (2009), 177–178 | DOI | MR | Zbl

[4] Efimovskaya O. V., Algebraicheskie aspekty teorii integriruemykh volchkov, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2005

[5] Razmyslov Yu. P., “Rolling i soizmerimost simpleksov”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2011, no. 5, 55–58 | MR

[6] Kaluza Th., “Zum Unitätsproblem der Physik”, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921, 966–972 | Zbl

[7] Petrogradsky V. M., Razmyslov Yu. P., Shishkin E. O., “Wreath products and Kaluzhnin–Krasner embedding for Lie algebras”, Proc. Am. Math. Soc., 135:3 (2007), 625–636 | DOI | MR | Zbl