Separation of convex sets by extreme hyperplanes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of separation of convex sets by extreme hyperplanes (functionals) in normed linear spaces is examined. A concept of a bar (a closed set of a special form) is introduced; it is shown that a bar is characterized by the property that any point not lying in it can be separated from it by an extreme hyperplane. In two-dimensional spaces, in spaces with strictly convex dual, and in the space of continuous functions, any two bars are extremely separated. This property is shown to fail in the space of summable functions. A number of examples and generalizations are given.
@article{FPM_2012_17_4_a0,
     author = {A. R. Alimov and V. Yu. Protasov},
     title = {Separation of convex sets by extreme hyperplanes},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
AU  - V. Yu. Protasov
TI  - Separation of convex sets by extreme hyperplanes
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 3
EP  - 12
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a0/
LA  - ru
ID  - FPM_2012_17_4_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%A V. Yu. Protasov
%T Separation of convex sets by extreme hyperplanes
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 3-12
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a0/
%G ru
%F FPM_2012_17_4_a0
A. R. Alimov; V. Yu. Protasov. Separation of convex sets by extreme hyperplanes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 3-12. http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a0/

[1] Alimov A. R., “Monotonnaya lineinaya svyaznost chebyshëvskikh mnozhestv v prostranstve $C(Q)$”, Mat. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl

[2] Boltyanskii V. G., Soltan P. S., “Kombinatornaya geometriya i klassy vypuklosti”, Uspekhi mat. nauk, 33:1 (1978), 3–42 | MR | Zbl

[3] Boltyanskii V. G., Soltan P. S., Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, Shtiintsa, Kishinëv, 1978 | MR

[4] Vasileva A. A., “Zamknutye promezhutki v $C(T)$ i $L_\varphi(T)$ i ikh approksimativnye svoistva”, Mat. zametki, 73:1 (2003), 135–138 | DOI | MR | Zbl

[5] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. mat., 68:4 (2004), 75–116 | DOI | MR | Zbl

[6] Vasileva A. A., “Kriterii suschestvovaniya gladkoi funktsii pri ogranicheniyakh”, Mat. zametki, 82:3 (2007), 335–346 | DOI | MR | Zbl

[7] Kutateladze S. S., Osnovy funktsionalnogo analiza, Izd-vo In-ta matematiki, Novosibirsk, 2000 | MR

[8] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, 1987, 103–260 | MR | Zbl

[9] Khavinson S. Ya., “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Anal. Math., 29 (2003), 87–105 | DOI | MR

[10] Borwein J. M., Lewis A. S., Convex Analysis and Nonlinear Optimization, Springer, New York, 2000 | MR

[11] Brown A. L., “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[12] Franchetti C., Cheney E. W., “The embedding of proximinal sets”, J. Approx. Theory, 48:2 (1986), 213–225 | DOI | MR | Zbl

[13] Franchetti C., Roversi S., Suns, $M$-connected sets and $P$-acyclic sets in Banach spaces, Preprint no. 50139, Istituto di Matematica Applicata “G. Sansone”, 1988

[14] Singer I., “On the extension of continuous linear functionals and best approximation in normed linear spaces”, Math. Ann., 159:5 (1965), 344–355 | DOI | MR | Zbl