Pure projective modules over exceptional uniserial noncoherent rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 67-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify pure projective modules over an arbitrary exceptional chain noncoherent ring $R$. In particular, we show that there exists a pure projective $R$-module admitting no indecomposable decomposition, but every pure projective module contains an indecomposable direct summand.
@article{FPM_2012_17_3_a5,
     author = {G. E. Puninski},
     title = {Pure projective modules over exceptional uniserial noncoherent rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--84},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/}
}
TY  - JOUR
AU  - G. E. Puninski
TI  - Pure projective modules over exceptional uniserial noncoherent rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 67
EP  - 84
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/
LA  - ru
ID  - FPM_2012_17_3_a5
ER  - 
%0 Journal Article
%A G. E. Puninski
%T Pure projective modules over exceptional uniserial noncoherent rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 67-84
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/
%G ru
%F FPM_2012_17_3_a5
G. E. Puninski. Pure projective modules over exceptional uniserial noncoherent rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 67-84. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/

[1] Drozd Yu., “Ob obobschënno odnoryadnykh koltsakh”, Mat. zametki, 18:5 (1975), 705–710 | MR | Zbl

[2] Puninskii G. E., “Polutsepnye koltsa Krullya–Shmidta i chisto in'ektivnye moduli”, Fundament. prikl. mat., 1:2 (1995), 471–489 | MR | Zbl

[3] Puninskii G. E., “Konechno predstavimye moduli nad tsepnymi koltsami”, Fundament. prikl. mat., 3:2 (1997), 631–633 | MR | Zbl

[4] Puninskii G. E., “Chisto proektivnye moduli nad isklyuchitelnym tsepnym kogerentnym koltsom”, Algebra i analiz, 13:6 (2001), 175–192 | MR | Zbl

[5] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Cambridge Univ. Press, Cambridge, 1986 | Zbl

[6] Bass H., “Big projective modules are free”, Illinois J. Math., 7 (1963), 24–31 | MR | Zbl

[7] Brungs H. H., Dubrovin N. I., “A classification and examples of rank one chain domains”, Trans. Am. Math. Soc., 355 (2003), 2733–2753 | DOI | MR | Zbl

[8] Dubrovin N., Puninski G., “Classifying projective modules over some semilocal rings”, Algebra Appl., 6 (2007), 1–27 | DOI | MR

[9] Facchini A., “Krull–Schmidt fails for serial modules”, Trans. Am. Math. Soc., 348 (1996), 4561–4576 | DOI | MR

[10] Facchini A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progress Math., 167, Birkhäuser, 1998 | DOI | MR | Zbl

[11] Facchini A., Příhoda P., “Factor categories and infinite direct sums”, Int. Electon. J. Algebra, 5 (2009), 135–168 | MR | Zbl

[12] Prest M., Purity, Spectra and Localization, Encyclopedia of Mathematics and Its Applications, 121, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[13] Příhoda P., “$\operatorname{Add}(U)$ of a uniserial module”, Comment. Math. Univ. Carolin., 47 (2006), 391–398 | MR

[14] Příhoda P., “Projective modules are determined by their radical factors”, J. Pure Appl. Algebra, 210 (2007), 827–835 | DOI | MR

[15] Puninski G., Serial Rings, Kluwer Academic, Dordrecht, 2001 | MR | Zbl

[16] Puninski G., “Some model theory over a nearly simple uniserial domain and decomposition of serial modules”, J. Pure Appl. Algebra, 163 (2001), 319–337 | DOI | MR | Zbl

[17] Puninski G., “Some model theory over an exceptional uniserial ring and decompositions of serial modules”, J. London Math. Soc., 64 (2001), 311–326 | DOI | MR | Zbl

[18] Puninski G., “Projective modules over the endomorphism ring of a biuniform module”, J. Pure Appl. Algebra, 188 (2004), 227–246 | DOI | MR | Zbl

[19] Puninski G., Rothmaler Ph., “Pure-projective modules”, J. London Math. Soc., 71 (2005), 304–320 | DOI | MR | Zbl

[20] Puninski G., Wisbauer R., Yousif M., “On $p$-injective rings”, Glasgow Math. J., 37 (1995), 373–378 | DOI | MR | Zbl

[21] Warfield R. B., “Purity and algebraic compactness for modules”, Pacific J. Math., 28 (1969), 699–719 | DOI | MR | Zbl

[22] Warfield R. B., “Serial rings and finitely presented modules”, J. Algebra, 37 (1975), 187–222 | DOI | MR | Zbl