Pure projective modules over exceptional uniserial noncoherent rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 67-84

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify pure projective modules over an arbitrary exceptional chain noncoherent ring $R$. In particular, we show that there exists a pure projective $R$-module admitting no indecomposable decomposition, but every pure projective module contains an indecomposable direct summand.
@article{FPM_2012_17_3_a5,
     author = {G. E. Puninski},
     title = {Pure projective modules over exceptional uniserial noncoherent rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--84},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/}
}
TY  - JOUR
AU  - G. E. Puninski
TI  - Pure projective modules over exceptional uniserial noncoherent rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 67
EP  - 84
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/
LA  - ru
ID  - FPM_2012_17_3_a5
ER  - 
%0 Journal Article
%A G. E. Puninski
%T Pure projective modules over exceptional uniserial noncoherent rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 67-84
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/
%G ru
%F FPM_2012_17_3_a5
G. E. Puninski. Pure projective modules over exceptional uniserial noncoherent rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 67-84. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/