Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_3_a5, author = {G. E. Puninski}, title = {Pure projective modules over exceptional uniserial noncoherent rings}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {67--84}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/} }
G. E. Puninski. Pure projective modules over exceptional uniserial noncoherent rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 67-84. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/
[1] Drozd Yu., “Ob obobschënno odnoryadnykh koltsakh”, Mat. zametki, 18:5 (1975), 705–710 | MR | Zbl
[2] Puninskii G. E., “Polutsepnye koltsa Krullya–Shmidta i chisto in'ektivnye moduli”, Fundament. prikl. mat., 1:2 (1995), 471–489 | MR | Zbl
[3] Puninskii G. E., “Konechno predstavimye moduli nad tsepnymi koltsami”, Fundament. prikl. mat., 3:2 (1997), 631–633 | MR | Zbl
[4] Puninskii G. E., “Chisto proektivnye moduli nad isklyuchitelnym tsepnym kogerentnym koltsom”, Algebra i analiz, 13:6 (2001), 175–192 | MR | Zbl
[5] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Cambridge Univ. Press, Cambridge, 1986 | Zbl
[6] Bass H., “Big projective modules are free”, Illinois J. Math., 7 (1963), 24–31 | MR | Zbl
[7] Brungs H. H., Dubrovin N. I., “A classification and examples of rank one chain domains”, Trans. Am. Math. Soc., 355 (2003), 2733–2753 | DOI | MR | Zbl
[8] Dubrovin N., Puninski G., “Classifying projective modules over some semilocal rings”, Algebra Appl., 6 (2007), 1–27 | DOI | MR
[9] Facchini A., “Krull–Schmidt fails for serial modules”, Trans. Am. Math. Soc., 348 (1996), 4561–4576 | DOI | MR
[10] Facchini A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progress Math., 167, Birkhäuser, 1998 | DOI | MR | Zbl
[11] Facchini A., Příhoda P., “Factor categories and infinite direct sums”, Int. Electon. J. Algebra, 5 (2009), 135–168 | MR | Zbl
[12] Prest M., Purity, Spectra and Localization, Encyclopedia of Mathematics and Its Applications, 121, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl
[13] Příhoda P., “$\operatorname{Add}(U)$ of a uniserial module”, Comment. Math. Univ. Carolin., 47 (2006), 391–398 | MR
[14] Příhoda P., “Projective modules are determined by their radical factors”, J. Pure Appl. Algebra, 210 (2007), 827–835 | DOI | MR
[15] Puninski G., Serial Rings, Kluwer Academic, Dordrecht, 2001 | MR | Zbl
[16] Puninski G., “Some model theory over a nearly simple uniserial domain and decomposition of serial modules”, J. Pure Appl. Algebra, 163 (2001), 319–337 | DOI | MR | Zbl
[17] Puninski G., “Some model theory over an exceptional uniserial ring and decompositions of serial modules”, J. London Math. Soc., 64 (2001), 311–326 | DOI | MR | Zbl
[18] Puninski G., “Projective modules over the endomorphism ring of a biuniform module”, J. Pure Appl. Algebra, 188 (2004), 227–246 | DOI | MR | Zbl
[19] Puninski G., Rothmaler Ph., “Pure-projective modules”, J. London Math. Soc., 71 (2005), 304–320 | DOI | MR | Zbl
[20] Puninski G., Wisbauer R., Yousif M., “On $p$-injective rings”, Glasgow Math. J., 37 (1995), 373–378 | DOI | MR | Zbl
[21] Warfield R. B., “Purity and algebraic compactness for modules”, Pacific J. Math., 28 (1969), 699–719 | DOI | MR | Zbl
[22] Warfield R. B., “Serial rings and finitely presented modules”, J. Algebra, 37 (1975), 187–222 | DOI | MR | Zbl