Pure projective modules over exceptional uniserial noncoherent rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 67-84
Voir la notice de l'article provenant de la source Math-Net.Ru
We classify pure projective modules over an arbitrary exceptional chain noncoherent ring $R$. In particular, we show that there exists a pure projective $R$-module admitting no indecomposable decomposition, but every pure projective module contains an indecomposable direct summand.
@article{FPM_2012_17_3_a5,
author = {G. E. Puninski},
title = {Pure projective modules over exceptional uniserial noncoherent rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {67--84},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/}
}
G. E. Puninski. Pure projective modules over exceptional uniserial noncoherent rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 67-84. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a5/