@article{FPM_2012_17_3_a4,
author = {B. V. Zabavsky and S. I. Bilavska},
title = {Every zero adequate ring is an exchange ring},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {61--66},
year = {2012},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/}
}
B. V. Zabavsky; S. I. Bilavska. Every zero adequate ring is an exchange ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 61-66. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/
[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR
[2] Zabavskii B. V., “Adekvatnye koltsa elementarnykh delitelei s konechnym chislom minimalnykh prostykh idealov”, Algebra i topologiya, LGU, Lvov, 1996, 74–78
[3] Zabavskii B. V., Komarnitskii M. Ya., “Ob adekvatnykh koltsakh”, Vestn. Lvovskogo univ., 30 (1988), 39–43 | MR
[4] Camillo V., Yu H. P., “Exchange rings, units and idempotents”, Commun. Algebra, 22:12 (1994), 4737–4749 | DOI | MR | Zbl
[5] Helmer O., “The elementary divisor for certain rings without chain condition”, Bull. Am. Math. Soc., 49:2 (1943), 225–236 | DOI | MR | Zbl
[6] Larsen M. D., Lewis W. J., Shores T. S., “Elementary divisor rings and finitely presented modules”, Trans. Amer. Math. Soc., 187 (1974), 231–248 | DOI | MR | Zbl
[7] Nicholson W. K., “Lifting idempotents and exchange rings”, Trans. Am. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl