Every zero adequate ring is an exchange ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $R$ is a commutative ring in which zero is an adequate element, then $R$ is an exchange ring and that every zero adequate ring is an exchange ring. There is a new description of adequate rings; this is an answer to questions formulated by Larsen, Lewis, and Shores.
@article{FPM_2012_17_3_a4,
     author = {B. V. Zabavsky and S. I. Bilavska},
     title = {Every zero adequate ring is an exchange ring},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {61--66},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/}
}
TY  - JOUR
AU  - B. V. Zabavsky
AU  - S. I. Bilavska
TI  - Every zero adequate ring is an exchange ring
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 61
EP  - 66
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/
LA  - ru
ID  - FPM_2012_17_3_a4
ER  - 
%0 Journal Article
%A B. V. Zabavsky
%A S. I. Bilavska
%T Every zero adequate ring is an exchange ring
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 61-66
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/
%G ru
%F FPM_2012_17_3_a4
B. V. Zabavsky; S. I. Bilavska. Every zero adequate ring is an exchange ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 61-66. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/

[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[2] Zabavskii B. V., “Adekvatnye koltsa elementarnykh delitelei s konechnym chislom minimalnykh prostykh idealov”, Algebra i topologiya, LGU, Lvov, 1996, 74–78

[3] Zabavskii B. V., Komarnitskii M. Ya., “Ob adekvatnykh koltsakh”, Vestn. Lvovskogo univ., 30 (1988), 39–43 | MR

[4] Camillo V., Yu H. P., “Exchange rings, units and idempotents”, Commun. Algebra, 22:12 (1994), 4737–4749 | DOI | MR | Zbl

[5] Helmer O., “The elementary divisor for certain rings without chain condition”, Bull. Am. Math. Soc., 49:2 (1943), 225–236 | DOI | MR | Zbl

[6] Larsen M. D., Lewis W. J., Shores T. S., “Elementary divisor rings and finitely presented modules”, Trans. Amer. Math. Soc., 187 (1974), 231–248 | DOI | MR | Zbl

[7] Nicholson W. K., “Lifting idempotents and exchange rings”, Trans. Am. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl