Every zero adequate ring is an exchange ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 61-66

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $R$ is a commutative ring in which zero is an adequate element, then $R$ is an exchange ring and that every zero adequate ring is an exchange ring. There is a new description of adequate rings; this is an answer to questions formulated by Larsen, Lewis, and Shores.
@article{FPM_2012_17_3_a4,
     author = {B. V. Zabavsky and S. I. Bilavska},
     title = {Every zero adequate ring is an exchange ring},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {61--66},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/}
}
TY  - JOUR
AU  - B. V. Zabavsky
AU  - S. I. Bilavska
TI  - Every zero adequate ring is an exchange ring
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 61
EP  - 66
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/
LA  - ru
ID  - FPM_2012_17_3_a4
ER  - 
%0 Journal Article
%A B. V. Zabavsky
%A S. I. Bilavska
%T Every zero adequate ring is an exchange ring
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 61-66
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/
%G ru
%F FPM_2012_17_3_a4
B. V. Zabavsky; S. I. Bilavska. Every zero adequate ring is an exchange ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 61-66. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/