Every zero adequate ring is an exchange ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 61-66
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if $R$ is a commutative ring in which zero is an adequate element, then $R$ is an exchange ring and that every zero adequate ring is an exchange ring. There is a new description of adequate rings; this is an answer to questions formulated by Larsen, Lewis, and Shores.
@article{FPM_2012_17_3_a4,
author = {B. V. Zabavsky and S. I. Bilavska},
title = {Every zero adequate ring is an exchange ring},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {61--66},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/}
}
B. V. Zabavsky; S. I. Bilavska. Every zero adequate ring is an exchange ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 61-66. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a4/