Some congruences on trioids
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 39-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the least idempotent congruence on the trioid with a commutative operation, the least semilattice congruence on the trioid with an idempotent operation, and the least separative congruence on the trioid with a commutative operation. Also we construct different examples of trioids.
@article{FPM_2012_17_3_a2,
     author = {A. V. Zhuchok},
     title = {Some congruences on trioids},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--49},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a2/}
}
TY  - JOUR
AU  - A. V. Zhuchok
TI  - Some congruences on trioids
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 39
EP  - 49
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a2/
LA  - ru
ID  - FPM_2012_17_3_a2
ER  - 
%0 Journal Article
%A A. V. Zhuchok
%T Some congruences on trioids
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 39-49
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a2/
%G ru
%F FPM_2012_17_3_a2
A. V. Zhuchok. Some congruences on trioids. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 39-49. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a2/

[1] Zhuchok A. V., “Napivretraktsiï dimonoïdiv”, Tr. IPMM NAN Ukrainy, 17, 2008, 42–50 | MR | Zbl

[2] Clifford A. H., Preston G. B., Algebraic Theory of Semigroups, v. 1, Amer. Math. Soc., 1964; v. 2, 1967

[3] Hewitt E., Zuckerman H. S., “The $l_1$-algebra of a commutative semigroup”, Trans. Am. Math. Soc., 83 (1956), 70–97 | MR | Zbl

[4] Loday J.-L., “Dialgebras”, Dialgebras and Related Operads, Lect. Notes Math., 1763, Springer, Berlin, 2001, 7–66 | DOI | MR | Zbl

[5] Loday J.-L., Ronco M. O., “Trialgebras and families of polytopes”, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory, Papers from the Int. Conf. on Algebraic Topology (Northwestern Univ., Evanston, IL, USA, March 24–28, 2002), Contemp. Math., 346, ed. P. Goerss, Amer. Math. Soc., Providence, 2004, 369–398 | DOI | MR | Zbl

[6] McLean D., “Idempotent semigroups”, Am. Math. Mon., 61 (1954), 110–113 | DOI | MR | Zbl

[7] Tamura T., Kimura N., “On decomposition of a commutative semigroup”, Kodai Math. Sem. Rep., 4 (1954), 109–112 | DOI | MR

[8] Zhuchok A. V., “Commutative dimonoids”, Algebra Discrete Math., 2009, no. 2, 116–127 | MR | Zbl

[9] Zhuchok A. V., “Dimonoids with a commutative operation”, Int. Conf. Mal'tsev Meeting, Collection of Abstracts, Novosibirsk, 2009, 185

[10] Zhuchok A. V., “On idempotent dimonoids”, Int. Conf. on Semigroups and Related Topics, Abstracts, Porto, Portugal, 2009, 87

[11] Zhuchok A. V., “Dibands of subdimonoids”, Mat. Stud., 33 (2010), 120–124 | MR | Zbl

[12] Zhuchok A. V., “Free commutative dimonoids”, Algebra Discrete Math., 9:1 (2010), 109–119 | MR | Zbl

[13] Zhuchok A. V., “Tribands of subtrioids”, Proc. Inst. Appl. Math. Mech., 21 (2010), 98–106 | MR | Zbl

[14] Zhuchok A. V., “Semilattices of subdimonoids”, Asian-Eur. J. Math., 4:2 (2011), 359–371 | DOI | MR | Zbl