Some congruences on trioids
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 39-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the least idempotent congruence on the trioid with a commutative operation, the least semilattice congruence on the trioid with an idempotent operation, and the least separative congruence on the trioid with a commutative operation. Also we construct different examples of trioids.
@article{FPM_2012_17_3_a2,
     author = {A. V. Zhuchok},
     title = {Some congruences on trioids},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--49},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a2/}
}
TY  - JOUR
AU  - A. V. Zhuchok
TI  - Some congruences on trioids
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 39
EP  - 49
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a2/
LA  - ru
ID  - FPM_2012_17_3_a2
ER  - 
%0 Journal Article
%A A. V. Zhuchok
%T Some congruences on trioids
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 39-49
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a2/
%G ru
%F FPM_2012_17_3_a2
A. V. Zhuchok. Some congruences on trioids. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 39-49. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a2/