Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_3_a0, author = {M. A. Goltvanitsa and S. N. Zaitsev and A. A. Nechaev}, title = {Skew linear recurring sequences of maximal period over {Galois} rings}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {5--23}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a0/} }
TY - JOUR AU - M. A. Goltvanitsa AU - S. N. Zaitsev AU - A. A. Nechaev TI - Skew linear recurring sequences of maximal period over Galois rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 5 EP - 23 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a0/ LA - ru ID - FPM_2012_17_3_a0 ER -
%0 Journal Article %A M. A. Goltvanitsa %A S. N. Zaitsev %A A. A. Nechaev %T Skew linear recurring sequences of maximal period over Galois rings %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 5-23 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a0/ %G ru %F FPM_2012_17_3_a0
M. A. Goltvanitsa; S. N. Zaitsev; A. A. Nechaev. Skew linear recurring sequences of maximal period over Galois rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 5-23. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a0/
[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, M., 2003
[2] Kurakin V. L., “Algoritm Berlekempa–Messi nad konechnymi koltsami, modulyami i bimodulyami”, Diskret. mat., 10:4 (1998), 3–34 | DOI | MR | Zbl
[3] Nechaev A. A., “Konechnye koltsa glavnykh idealov”, Mat. sb., 91(133):3 (1973), 350–366 | MR | Zbl
[4] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskret. mat., 1:4 (1989), 123–139 | MR | Zbl
[5] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskret. mat., 3:4 (1991), 105–127 | MR | Zbl
[6] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Mat. sb., 184:3 (1993), 21–56 | MR | Zbl
[7] Ghorpade S. R., Hasan S. U., Kumari M., “Primitive polynomials, Singer cycles, and word-oriented linear feedback shift registers”, Des. Codes Cryptogr., 58:2 (2011), 123–134 | DOI | MR | Zbl
[8] Ghorpade S. R., Ram S., “Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields”, Finite Fields Appl., 17:5 (2011), 461–472 | DOI | MR | Zbl
[9] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[10] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over Abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl
[11] Lidl R., Niederreiter H., Finite Fields, Encyclopedia of Mathematics and Its Applications, 20, Cambridge Univ. Press, Cambridge, 1983 | MR | Zbl
[12] McDonald B. R., Finite Rings with Identity, Marcel Dekker, New York, 1974 | MR | Zbl
[13] Nechaev A. A., “Finite rings with applications”, Handbook of Algebra, 5, ed. M. Hazewinkel, Elsevier, 2008, 213–320 | DOI | MR | Zbl
[14] Tsaban B., Vishne U., “Efficient linear feedback shift registers with maximal period”, Finite Fields Appl., 8:2 (2002), 256–267 | DOI | MR | Zbl
[15] Zeng G., Han W., He K., Word-oriented feedback shift register: $\sigma$-LFSR, Cryptology ePrint Archive: Report 2007/114 http://eprint.iacr.org/2007/114
[16] Zeng G., He K. C., Han W., “A trinomial type of $\sigma$-LFSR oriented toward software implementation”, Sci. China. Ser. F Information Sci., 50:3 (2007), 359–372 | MR | Zbl
[17] Zeng G., Yang Y., Han W., Fan S., “Word oriented cascade jump $\sigma$-LFSR”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 18th Int. Symp., AAECC-18 (Tarragona, Sapin, June 8–12, 2009), Proceedings, Lect. Notes Comput. Sci., 5527, ed. M. Bras-Amorós, Springer, Berlin, 2009, 127–136 | DOI | MR | Zbl