Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 183-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak g$ be a reductive Lie algebra over $\mathbb C$ and $\mathfrak k\subset\mathfrak g$ be a reductive in $\mathfrak g$ subalgebra. We call a $\mathfrak g$-module $M$$(\mathfrak g,\mathfrak k)$-module whenever $M$ is a direct sum of finite-dimensional $\mathfrak k$-modules. We call a $(\mathfrak g,\mathfrak k)$-module $M$ bounded if there exists $C_M\in\mathbb Z_{\ge0}$ such that for any simple finite-dimensional $\mathfrak k$-module $E$ the dimension of the $E$-isotypic component is not more than $C_M\dim E$. Bounded $(\mathfrak g,\mathfrak k)$-modules form a subcategory of the category of $\mathfrak g$-modules. Let $V$ be a finite-dimensional vector space. We prove that the categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$-modules and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of $V$.
@article{FPM_2012_17_2_a7,
     author = {A. V. Petukhov},
     title = {Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {183--199},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/}
}
TY  - JOUR
AU  - A. V. Petukhov
TI  - Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 183
EP  - 199
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/
LA  - ru
ID  - FPM_2012_17_2_a7
ER  - 
%0 Journal Article
%A A. V. Petukhov
%T Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 183-199
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/
%G ru
%F FPM_2012_17_2_a7
A. V. Petukhov. Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 183-199. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/

[1] Vinberg E., “Kommutativnye odnorodnye prostranstva i ko-izotropnye simplekticheskie deistviya”, Uspekhi mat. nauk, 56:1 (2001), 3–62 | DOI | MR | Zbl

[2] Vinberg E., Kimelfeld B., “Odnorodnye oblasti na flagovykh mnogoobraziyakh i sfericheskie podgruppy poluprostykh grupp Li”, Funkts. analiz i ego pril., 12:3 (1978), 12–19 | MR | Zbl

[3] Vinberg E., Onischik A., Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1988

[4] Vinberg E., Popov V., “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, 1989, 137–309 | MR | Zbl

[5] Beilinson A., “Localization of representations of reductive Lie algebras”, Proc. of the Int. Congress of Mathematicians (Warsaw, 1983), PWN, Warsaw, 1984, 699–710 | MR

[6] Bernstein J., Gelfand S., “Tensor products of finite and infinite-dimensional representations of semisimple Lie algebras”, Compositio Math., 41 (1980), 245–285 | MR | Zbl

[7] Borel A. et al., Algebraic $D$-Modules, Perspectives in Math., 2, Academic Press, Boston, 1987 | MR | Zbl

[8] Braden T., Grinberg M., “Perverse sheaves on rank stratifications”, Duke Math. J., 96 (1999), 317–362 | DOI | MR | Zbl

[9] Collingwood D., McGovern W., Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Math. Ser., Van Nostrand, New York, 1993 | MR | Zbl

[10] Dixmier J., Algebres Enveloppantes, Gauthier-Villars, Paris, 1974 | MR | Zbl

[11] Fernando S., “Lie algebra modules with finite dimensional weight spaces. I”, Trans. Amer. Math. Soc., 322 (1990), 757–781 | DOI | MR | Zbl

[12] Gabber O., “The integrability of the characteristic variety”, Amer. J. Math., 103 (1981), 445–468 | DOI | MR | Zbl

[13] Howe R., Umeda T., “The Capelli identity, the double commutant theorem, and multiplicity-free actions”, Math. Ann., 290 (1991), 565–619 | DOI | MR | Zbl

[14] Joseph A., “On the associated variety of the primitive ideal”, J. Algebra, 88 (1984), 238–278 | DOI | MR | Zbl

[15] Joseph A., “Orbital varieties of the minimal orbit”, Ann. Sci. École Norm. Sup., 31 (1998), 17–45 | MR | Zbl

[16] Kac V., “Constructing groups associated to infinite dimensional Lie algebras”, Infinite-Dimensional Groups with Applications, Proc. of the Conf. on Infinite-Dimensional Groups (Berkeley 1984), MSRI Publ., 4, Springer, Berlin, 1985, 167–216 | MR

[17] Kashiwara M., “The Riemann–Hilbert problem for holonomic systems”, Publ. Res. Inst. Math. Sci., 20 (1984), 319–365 | DOI | MR | Zbl

[18] Knapp A., Vogan D., Cohomological Induction and Unitary Representations, Princeton Math. Ser., 45, Princeton Univ. Press, Princeton, 1995 | MR | Zbl

[19] Knop F., “Weylgruppe und Momentabbildung”, Invent. Math., 99 (1990), 1–23 | DOI | MR | Zbl

[20] Krause G., Lenagan T., Growth of Algebras and Gelfand–Kirillov Dimension, Grad. Stud. Math., 22, Amer. Math. Soc., 2000 | MR | Zbl

[21] Mathieu O., “Classification of irreducible weight modules”, Ann. Inst. Fourier, 50 (2000), 537–592 | DOI | MR | Zbl

[22] Milev T., “Root Fernando–Kac subalgebras of finite type”, J. Algebra, 336:1 (2011), 257–278 | DOI | MR | Zbl

[23] Panyushev D., “On the conormal bundles of a $G$-stable subvariety”, Manuscripta Math., 99 (1999), 185–202 | DOI | MR | Zbl

[24] Penkov I., Serganova V., “Bounded simple $(\mathfrak g,\mathfrak{sl}(2))$-modules for $\operatorname{rk}\mathfrak g=2$”, J. Lie Theory, 20 (2010), 581–615 | MR | Zbl

[25] Penkov I., Serganova V., “Bounded generalized Harish–Chandra modules”, Ann. Inst. Fourier (to appear)

[26] Penkov I., Serganova V., Zuckerman G., “On the existence of $(\mathfrak g,\mathfrak k)$-modules of finite type”, Duke Math. J., 125 (2004), 329–349 | DOI | MR | Zbl

[27] Petukhov A., “Bounded reductive subalgebras of $\mathfrak{sl}_n$”, Transform. Groups, 16:4 (2011), 1173–1182 | DOI | MR | Zbl

[28] Richardson R., “Conjugacy classes of parabolic subgroups in semisimple algebraic groups”, Bull. London Math. Soc., 6 (1974), 21–24 | DOI | MR | Zbl