Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 183-199

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak g$ be a reductive Lie algebra over $\mathbb C$ and $\mathfrak k\subset\mathfrak g$ be a reductive in $\mathfrak g$ subalgebra. We call a $\mathfrak g$-module $M$$(\mathfrak g,\mathfrak k)$-module whenever $M$ is a direct sum of finite-dimensional $\mathfrak k$-modules. We call a $(\mathfrak g,\mathfrak k)$-module $M$ bounded if there exists $C_M\in\mathbb Z_{\ge0}$ such that for any simple finite-dimensional $\mathfrak k$-module $E$ the dimension of the $E$-isotypic component is not more than $C_M\dim E$. Bounded $(\mathfrak g,\mathfrak k)$-modules form a subcategory of the category of $\mathfrak g$-modules. Let $V$ be a finite-dimensional vector space. We prove that the categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$-modules and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of $V$.
@article{FPM_2012_17_2_a7,
     author = {A. V. Petukhov},
     title = {Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {183--199},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/}
}
TY  - JOUR
AU  - A. V. Petukhov
TI  - Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 183
EP  - 199
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/
LA  - ru
ID  - FPM_2012_17_2_a7
ER  - 
%0 Journal Article
%A A. V. Petukhov
%T Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 183-199
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/
%G ru
%F FPM_2012_17_2_a7
A. V. Petukhov. Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 183-199. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/