Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_2_a7, author = {A. V. Petukhov}, title = {Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {183--199}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/} }
TY - JOUR AU - A. V. Petukhov TI - Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 183 EP - 199 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/ LA - ru ID - FPM_2012_17_2_a7 ER -
%0 Journal Article %A A. V. Petukhov %T Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 183-199 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/ %G ru %F FPM_2012_17_2_a7
A. V. Petukhov. Categories of bounded $(\mathfrak{sp}(\mathrm S^2V\oplus\mathrm S^2V^*),\mathfrak{gl}(V))$- and $(\mathfrak{sp}(\Lambda^2V\oplus\Lambda^2V^*),\mathfrak{gl}(V))$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 183-199. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a7/
[1] Vinberg E., “Kommutativnye odnorodnye prostranstva i ko-izotropnye simplekticheskie deistviya”, Uspekhi mat. nauk, 56:1 (2001), 3–62 | DOI | MR | Zbl
[2] Vinberg E., Kimelfeld B., “Odnorodnye oblasti na flagovykh mnogoobraziyakh i sfericheskie podgruppy poluprostykh grupp Li”, Funkts. analiz i ego pril., 12:3 (1978), 12–19 | MR | Zbl
[3] Vinberg E., Onischik A., Seminar po gruppam Li i algebraicheskim gruppam, URSS, M., 1988
[4] Vinberg E., Popov V., “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, 1989, 137–309 | MR | Zbl
[5] Beilinson A., “Localization of representations of reductive Lie algebras”, Proc. of the Int. Congress of Mathematicians (Warsaw, 1983), PWN, Warsaw, 1984, 699–710 | MR
[6] Bernstein J., Gelfand S., “Tensor products of finite and infinite-dimensional representations of semisimple Lie algebras”, Compositio Math., 41 (1980), 245–285 | MR | Zbl
[7] Borel A. et al., Algebraic $D$-Modules, Perspectives in Math., 2, Academic Press, Boston, 1987 | MR | Zbl
[8] Braden T., Grinberg M., “Perverse sheaves on rank stratifications”, Duke Math. J., 96 (1999), 317–362 | DOI | MR | Zbl
[9] Collingwood D., McGovern W., Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Math. Ser., Van Nostrand, New York, 1993 | MR | Zbl
[10] Dixmier J., Algebres Enveloppantes, Gauthier-Villars, Paris, 1974 | MR | Zbl
[11] Fernando S., “Lie algebra modules with finite dimensional weight spaces. I”, Trans. Amer. Math. Soc., 322 (1990), 757–781 | DOI | MR | Zbl
[12] Gabber O., “The integrability of the characteristic variety”, Amer. J. Math., 103 (1981), 445–468 | DOI | MR | Zbl
[13] Howe R., Umeda T., “The Capelli identity, the double commutant theorem, and multiplicity-free actions”, Math. Ann., 290 (1991), 565–619 | DOI | MR | Zbl
[14] Joseph A., “On the associated variety of the primitive ideal”, J. Algebra, 88 (1984), 238–278 | DOI | MR | Zbl
[15] Joseph A., “Orbital varieties of the minimal orbit”, Ann. Sci. École Norm. Sup., 31 (1998), 17–45 | MR | Zbl
[16] Kac V., “Constructing groups associated to infinite dimensional Lie algebras”, Infinite-Dimensional Groups with Applications, Proc. of the Conf. on Infinite-Dimensional Groups (Berkeley 1984), MSRI Publ., 4, Springer, Berlin, 1985, 167–216 | MR
[17] Kashiwara M., “The Riemann–Hilbert problem for holonomic systems”, Publ. Res. Inst. Math. Sci., 20 (1984), 319–365 | DOI | MR | Zbl
[18] Knapp A., Vogan D., Cohomological Induction and Unitary Representations, Princeton Math. Ser., 45, Princeton Univ. Press, Princeton, 1995 | MR | Zbl
[19] Knop F., “Weylgruppe und Momentabbildung”, Invent. Math., 99 (1990), 1–23 | DOI | MR | Zbl
[20] Krause G., Lenagan T., Growth of Algebras and Gelfand–Kirillov Dimension, Grad. Stud. Math., 22, Amer. Math. Soc., 2000 | MR | Zbl
[21] Mathieu O., “Classification of irreducible weight modules”, Ann. Inst. Fourier, 50 (2000), 537–592 | DOI | MR | Zbl
[22] Milev T., “Root Fernando–Kac subalgebras of finite type”, J. Algebra, 336:1 (2011), 257–278 | DOI | MR | Zbl
[23] Panyushev D., “On the conormal bundles of a $G$-stable subvariety”, Manuscripta Math., 99 (1999), 185–202 | DOI | MR | Zbl
[24] Penkov I., Serganova V., “Bounded simple $(\mathfrak g,\mathfrak{sl}(2))$-modules for $\operatorname{rk}\mathfrak g=2$”, J. Lie Theory, 20 (2010), 581–615 | MR | Zbl
[25] Penkov I., Serganova V., “Bounded generalized Harish–Chandra modules”, Ann. Inst. Fourier (to appear)
[26] Penkov I., Serganova V., Zuckerman G., “On the existence of $(\mathfrak g,\mathfrak k)$-modules of finite type”, Duke Math. J., 125 (2004), 329–349 | DOI | MR | Zbl
[27] Petukhov A., “Bounded reductive subalgebras of $\mathfrak{sl}_n$”, Transform. Groups, 16:4 (2011), 1173–1182 | DOI | MR | Zbl
[28] Richardson R., “Conjugacy classes of parabolic subgroups in semisimple algebraic groups”, Bull. London Math. Soc., 6 (1974), 21–24 | DOI | MR | Zbl