$\mathcal E$-closed groups and modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 97-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses Abelian groups (modules) isomorphic to their endomorphism groups (modules). A necessary and sufficient condition is given according to which the commutativity of the endomorphism ring of a group $G$ follows from the isomorphism $G\cong\operatorname{End}G$.
@article{FPM_2012_17_2_a3,
     author = {A. V. Grishin and A. V. Tsarev},
     title = {$\mathcal E$-closed groups and modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a3/}
}
TY  - JOUR
AU  - A. V. Grishin
AU  - A. V. Tsarev
TI  - $\mathcal E$-closed groups and modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 97
EP  - 106
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a3/
LA  - ru
ID  - FPM_2012_17_2_a3
ER  - 
%0 Journal Article
%A A. V. Grishin
%A A. V. Tsarev
%T $\mathcal E$-closed groups and modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 97-106
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a3/
%G ru
%F FPM_2012_17_2_a3
A. V. Grishin; A. V. Tsarev. $\mathcal E$-closed groups and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 97-106. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a3/

[1] Davydova O. I., “Faktorno delimye abelevy gruppy ranga $1$”, Fundament. i prikl. mat., 13:3 (2007), 25–33 | MR | Zbl

[2] Krylov P. A., Mikhalëv A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov., Faktorial, M., 2006

[3] Arnold D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, Berlin, 1982 | MR | Zbl

[4] Arnold D., Murley C. E., “Abelian groups $A$ such that $\operatorname{Hom}(A,-)$ preserves direct sums of copies of $A$”, Pacific J. Math., 56:1 (1975), 7–20 | DOI | MR | Zbl

[5] Feigelstock S., Hausen J., Raphael R., “Groups which map onto their endomorphism rings”, Abelian Groups and Modules, Proc. of the Int. Conf. (Dublin, Ireland, August 10–14, 1998), Trends Math., ed. P. C. Eklof, Birkhäuser, Basel, 1999, 231–239 | MR | Zbl

[6] Gerstenhaber M., “On dominance and varieties of commuting matrices”, Ann. Math., 73 (1961), 324–348 | DOI | MR | Zbl

[7] Göbel R., Shelah S., Strüngmann L., Generalized $E$-rings, 2004, arXiv: math/0404271 | MR

[8] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Aust. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl

[9] Schur I., “Zur Theorie der vertauschbaren Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | Zbl