Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_2_a1, author = {C. Garc{\'\i}a Pillado and S. Gonz\'alez and V. T. Markov and C. Mart{\'\i}nez and A. A. Nechaev}, title = {When are all group codes of a~noncommutative group {Abelian} (a~computational approach)?}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {75--85}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a1/} }
TY - JOUR AU - C. García Pillado AU - S. González AU - V. T. Markov AU - C. Martínez AU - A. A. Nechaev TI - When are all group codes of a~noncommutative group Abelian (a~computational approach)? JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 75 EP - 85 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a1/ LA - ru ID - FPM_2012_17_2_a1 ER -
%0 Journal Article %A C. García Pillado %A S. González %A V. T. Markov %A C. Martínez %A A. A. Nechaev %T When are all group codes of a~noncommutative group Abelian (a~computational approach)? %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 75-85 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a1/ %G ru %F FPM_2012_17_2_a1
C. García Pillado; S. González; V. T. Markov; C. Martínez; A. A. Nechaev. When are all group codes of a~noncommutative group Abelian (a~computational approach)?. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 75-85. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a1/
[1] Gonsales S., Kouselo E., Markov V., Nechaev A., “Gruppovye kody i ikh neassotsiativnye obobscheniya”, Diskret. mat., 16:1 (2004), 146–156 | DOI | MR | Zbl
[2] Kholl M., Teoriya grupp, Izd. inostr. lit., M., 1962
[3] Bernal J. J., del Río Á., Simón J. J., “An intrinsical description of group codes”, Designs, Codes and Cryptography, 51:3 (2009), 289–300 | DOI | MR | Zbl