When are all group codes of a~noncommutative group Abelian (a~computational approach)?
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 75-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $F$ be a field. Any linear code over $F$ that is permutation equivalent to some code defined by an ideal of the group ring $FG$ will be called a $G$-code. The theory of these “abstract” group codes was developed in 2009. A code is called Abelian if it is an $A$-code for some Abelian group $A$. Some conditions were given that all $G$-codes for some group $G$ are Abelian but no examples of non-Abelian group codes were known at that time. We use a computer algebra system GAP to show that all $G$-codes over any field are Abelian if $|G|128$ and $|G|\notin\{24,48,54,60,64,72,96,108,120\}$, but for $F=\mathbb F_5$ and $G=\mathrm S_4$ there exist non-Abelian $G$-codes over $F$. It is also shown that the existence of left non-Abelian group codes for a given group depends in general on the field of coefficients, while for (two-sided) group codes the corresponding question remains open.
@article{FPM_2012_17_2_a1,
     author = {C. Garc{\'\i}a Pillado and S. Gonz\'alez and V. T. Markov and C. Mart{\'\i}nez and A. A. Nechaev},
     title = {When are all group codes of a~noncommutative group {Abelian} (a~computational approach)?},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a1/}
}
TY  - JOUR
AU  - C. García Pillado
AU  - S. González
AU  - V. T. Markov
AU  - C. Martínez
AU  - A. A. Nechaev
TI  - When are all group codes of a~noncommutative group Abelian (a~computational approach)?
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 75
EP  - 85
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a1/
LA  - ru
ID  - FPM_2012_17_2_a1
ER  - 
%0 Journal Article
%A C. García Pillado
%A S. González
%A V. T. Markov
%A C. Martínez
%A A. A. Nechaev
%T When are all group codes of a~noncommutative group Abelian (a~computational approach)?
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 75-85
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a1/
%G ru
%F FPM_2012_17_2_a1
C. García Pillado; S. González; V. T. Markov; C. Martínez; A. A. Nechaev. When are all group codes of a~noncommutative group Abelian (a~computational approach)?. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 75-85. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a1/

[1] Gonsales S., Kouselo E., Markov V., Nechaev A., “Gruppovye kody i ikh neassotsiativnye obobscheniya”, Diskret. mat., 16:1 (2004), 146–156 | DOI | MR | Zbl

[2] Kholl M., Teoriya grupp, Izd. inostr. lit., M., 1962

[3] Bernal J. J., del Río Á., Simón J. J., “An intrinsical description of group codes”, Designs, Codes and Cryptography, 51:3 (2009), 289–300 | DOI | MR | Zbl

[4] http://www.gap-system.org/