Almost primitive elements of free nonassociative algebras of small ranks
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 127-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a field, $X=\{x_1,\dots,x_n\}$, and let $F(X)$ be the free nonassociative algebra over the field $K$ with the set $X$ of free generators. A. G. Kurosh proved that subalgebras of free nonassociative algebras are free. A subset $M$ of nonzero elements of the algebra $F(X)$ is said to be primitive if there is a set $Y$ of free generators of $F(X)$, $F(X)=F(Y)$, such that $M\subseteq Y$ (in this case we have $|Y|=|X|=n$). A nonzero element $u$ of the free algebra $F(X)$ is said to be an almost primitive if $u$ is not a primitive element of the algebra $F(X)$, but $u$ is a primitive element of any proper subalgebra of $F(X)$ that contains it. In this article, for free nonassociative algebras of rank 1 and 2 criteria for homogeneous elements to be almost primitive are obtained and algorithms to recognize homogeneous almost primitive elements are constructed. New examples of almost primitive elements of free nonassociative algebras of rank 3 are constructed.
@article{FPM_2012_17_1_a6,
     author = {A. V. Klimakov and A. A. Mikhalev},
     title = {Almost primitive elements of free nonassociative algebras of small ranks},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--141},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a6/}
}
TY  - JOUR
AU  - A. V. Klimakov
AU  - A. A. Mikhalev
TI  - Almost primitive elements of free nonassociative algebras of small ranks
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 127
EP  - 141
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a6/
LA  - ru
ID  - FPM_2012_17_1_a6
ER  - 
%0 Journal Article
%A A. V. Klimakov
%A A. A. Mikhalev
%T Almost primitive elements of free nonassociative algebras of small ranks
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 127-141
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a6/
%G ru
%F FPM_2012_17_1_a6
A. V. Klimakov; A. A. Mikhalev. Almost primitive elements of free nonassociative algebras of small ranks. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 127-141. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a6/

[1] Artamonov V. A., Mikhalëv A. A., Mikhalëv A. V., “Avtomorfizmy svobodnykh algebr shraierovykh mnogoobrazii”, Sovr. probl. mat. i mekh., 4:3 (2009), 39–57

[2] Kurosh A. G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Mat. sb., 20(62):2 (1947), 239–262 | MR | Zbl

[3] Mikhalëv A. A., Mikhalëv A. V., Chepovskii A. A., Shampaner K., “Primitivnye elementy svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. mat., 13:5 (2007), 171–192 | MR | Zbl

[4] Shampaner K., “Algoritmy realizatsii ranga i primitivnosti sistem elementov svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. mat., 6:4 (2000), 1229–1238 | MR | Zbl

[5] Bokut L. A., Kukin G. P., Algorithmic and Combinatorial Algebra, Kluwer, Dordrecht, 1994 | MR | Zbl

[6] Brunner A. M., Burns R. G., Oates-Williams S., “On almost primitive elements of free groups with an application to Fuchsian groups”, Can. J. Math., 45 (1993), 225–254 | DOI | MR | Zbl

[7] Comerford L. P., “Generic elements of free groups”, Arch. Math. (Basel), 65:3 (1995), 185–195 | DOI | MR | Zbl

[8] Fine B., Rosenberger G., Spellman D., Stille M., “Test words, generic elements and almost primitivity”, Pacific J. Math., 190 (1999), 277–297 | DOI | MR | Zbl

[9] Mikhalev A. A., Shpilrain V., Yu J.-T., Combinatorial Methods. Free Groups, Polynomials, and Free Algebras, Springer, Berlin, 2004 | MR | Zbl

[10] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Automorphic orbits of elements of free non-associative algebras”, J. Algebra, 243 (2001), 198–223 | DOI | MR | Zbl

[11] Mikhalev A. A., Yu J.-T., “Primitive, almost primitive, test, and $\Delta$-primitive elements of free algebras with the Nielsen–Schreier property”, J. Algebra, 228 (2000), 603–623 | DOI | MR | Zbl

[12] Rosenberger G., “Alternierende Produkte in freien Gruppen”, Pacific J. Math., 78 (1978), 243–250 | DOI | MR | Zbl

[13] Rosenberger G., “Über Darstellungen von Elementen und Untergruppen in freien Produkten”, Proc. of Groups – Korea 1983, Lect. Notes Math., 1098, Springer, Berlin, 1984, 142–160 | DOI | MR

[14] Rosenberger G., “A property of subgroups of free groups”, Bull. Austral. Math. Soc., 43 (1991), 269–272 | DOI | MR | Zbl