The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 107-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of characterization of integrals as linear functionals is considered in the paper. It starts from the familiar results of F. Riesz (1909) and J. Radon (1913) on integral representation of bounded linear functionals by Riemann–Stieltjes integrals on a segment and by Lebesgue integrals on a compact in $\mathbb R^n$, respectively. After works of J. Radon, M. Fréchet, and F. Hausdorff the problem of characterization of integrals as linear functionals took the particular form of the problem of extension of Radon's theorem from $\mathbb R^n$ to more general topological spaces with Radon measures. This problem has turned out difficult and its solution has a long and abundant history. Therefore, it may be naturally called the Riesz–Radon–Fréchet problem of characterization of integrals. The important stages of its solving are connected with such mathematicians as S. Banach, S. Saks, S. Kakutani, P. Halmos, E. Hewitt, R. E. Edwards, N. Bourbaki, V. K. Zakharov, A. V. Mikhalev, et al. In this paper, the Riesz–Radon–Fréchet problem is solved for the general case of arbitrary Radon measures on Hausdorff spaces. The solution is given in the form of a general parametric theorem in terms of a new notion of the boundedness index of a functional. The theorem implies as particular cases well-known results of the indicated authors characterizing Radon integrals for various classes of Radon measures and topological spaces.
@article{FPM_2012_17_1_a5,
     author = {V. K. Zakharov and A. V. Mikhalev and T. V. Rodionov},
     title = {The characterization of integrals with respect to arbitrary {Radon} measures by the boundedness indices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {107--126},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - A. V. Mikhalev
AU  - T. V. Rodionov
TI  - The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 107
EP  - 126
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/
LA  - ru
ID  - FPM_2012_17_1_a5
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A A. V. Mikhalev
%A T. V. Rodionov
%T The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 107-126
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/
%G ru
%F FPM_2012_17_1_a5
V. K. Zakharov; A. V. Mikhalev; T. V. Rodionov. The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 107-126. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/

[1] Burbaki N., Integrirovanie. Mery na kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977

[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd. inostr. lit., M., 1962

[3] Zakharov V. K., “Problema kharakterizatsii radonovskikh integralov”, Dokl. RAN, 385:6 (2002), 735–737 | MR | Zbl

[4] Zakharov V. K., “Problema Rissa–Radona kharakterizatsii integralov i slabaya kompaktnost radonovskikh mer”, Tr. Mat. in-ta im. V. A. Steklova RAN, 248, 2005, 106–116 | MR | Zbl

[5] Zakharov V. K., Mikhalëv A. V., “Integralnoe predstavlenie dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Fundament. i prikl. mat., 3:4 (1997), 1135–1172 | MR | Zbl

[6] Zakharov V. K., Mikhalëv A. V., “Problema integralnogo predstavleniya dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Dokl. RAN, 360:1 (1998), 13–15 | MR | Zbl

[7] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva”, Izv. RAN. Ser. mat., 63:5 (1999), 37–82 | DOI | MR | Zbl

[8] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva. II”, Izv. RAN. Ser. mat., 66:6 (2002), 3–18 | DOI | MR | Zbl

[9] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema Rissa–Radona–Freshe kharakterizatsii radonovskikh integralov: ogranichennye mery; polozhitelnye mery; bimery; obschie radonovskie mery”, Sovremennye problemy matematiki, mekhaniki i ikh prilozhenii, Materialy mezhdunar. konf., posv. 70-letiyu rektora MGU akademika V. A. Sadovnichego, Universitetskaya kniga, M., 2009, 91–92

[10] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Opisanie integralov po vsem radonovskim meram na proizvolnom khausdorfovom prostranstve”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 15-i Saratovskoi zimnei shkoly, posvyaschënnoi 125-letiyu so dnya rozhdeniya V. V. Golubeva i 100-letiyu SGU, SGU, Saratov, 2010, 76–77

[11] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema Rissa–Radona–Freshe kharakterizatsii integralov”, Uspekhi mat. nauk, 65:4 (2010), 153–178 | DOI | MR | Zbl

[12] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema kharakterizatsii obschikh radonovskikh integralov”, Dokl. RAN, 433:6 (2010), 731–735 | MR | Zbl

[13] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Opisanie radonovskikh integralov kak lineinykh funktsionalov”, Fundament. i prikl. mat., 16:8 (2010), 87–161 | MR

[14] Zakharov V. K., Rodionov T. V., “Klass ravnomernykh funktsii i ego sootnoshenie s klassom izmerimykh funktsii”, Mat. zametki, 84:6 (2008), 809–824 | DOI | MR | Zbl

[15] Khausdorf F., Teoriya mnozhestv, URSS, M., 2004

[16] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[17] Edwards R. E., “A theory of Radon measures on locally compact spaces”, Acta Math., 89 (1953), 133–164 | DOI | MR | Zbl

[18] Fremlin D. H., Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[19] Halmos P. R., Measure Theory, Van Nostrand, Princeton, 1950 | MR | Zbl

[20] Hausdorff F., Grundzüge der Mengenlehre, Weit, Leipzig, 1914

[21] Hewitt E., “Integration on locally compact spaces. I”, Univ. of Washington Publ. Math., 3 (1952), 71–75 | MR

[22] Hewitt E., Stromberg K., Real and Abstract Analysis, Springer, Berlin, 1965 | MR | Zbl

[23] Jacobs K., Measure and Integral, Academic Press, New York, 1978 | MR | Zbl

[24] Jech T., Set Theory, Springer Monographs Math., Springer, Berlin, 2002 | MR

[25] Kakutani S., “Concrete representation of abstract ($M$)-spaces”, Ann. Math. (2), 42 (1941), 994–1024 | DOI | MR | Zbl

[26] Radon J., “Theorie und Anwendungen der absolut additiven Mengenfunktionen”, Sitzungsber. Math.-Natur. Kl. Akad. Wiss. Wien., 122 (1913), 1295–1438 | Zbl

[27] Riesz F., “Sur les opérations fonctionelles linéaires”, C. R. Acad. Sci. Paris, 149 (1909), 974–977

[28] Semadeni Z., Banach Spaces of Continuous Functions, PWN, Warszawa, 1971 | Zbl

[29] Sierpiński W., “Sur les fonctions développables en séries absolument convergentes de fonctions continues”, Fund. Math., 2 (1921), 15–27 | Zbl

[30] Zakharov V. K., “Alexandrovian cover and Sierpińskian extension”, Studia Sci. Math. Hungar., 24:2–3 (1989), 93–117 | MR | Zbl