The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 107-126

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of characterization of integrals as linear functionals is considered in the paper. It starts from the familiar results of F. Riesz (1909) and J. Radon (1913) on integral representation of bounded linear functionals by Riemann–Stieltjes integrals on a segment and by Lebesgue integrals on a compact in $\mathbb R^n$, respectively. After works of J. Radon, M. Fréchet, and F. Hausdorff the problem of characterization of integrals as linear functionals took the particular form of the problem of extension of Radon's theorem from $\mathbb R^n$ to more general topological spaces with Radon measures. This problem has turned out difficult and its solution has a long and abundant history. Therefore, it may be naturally called the Riesz–Radon–Fréchet problem of characterization of integrals. The important stages of its solving are connected with such mathematicians as S. Banach, S. Saks, S. Kakutani, P. Halmos, E. Hewitt, R. E. Edwards, N. Bourbaki, V. K. Zakharov, A. V. Mikhalev, et al. In this paper, the Riesz–Radon–Fréchet problem is solved for the general case of arbitrary Radon measures on Hausdorff spaces. The solution is given in the form of a general parametric theorem in terms of a new notion of the boundedness index of a functional. The theorem implies as particular cases well-known results of the indicated authors characterizing Radon integrals for various classes of Radon measures and topological spaces.
@article{FPM_2012_17_1_a5,
     author = {V. K. Zakharov and A. V. Mikhalev and T. V. Rodionov},
     title = {The characterization of integrals with respect to arbitrary {Radon} measures by the boundedness indices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {107--126},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - A. V. Mikhalev
AU  - T. V. Rodionov
TI  - The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 107
EP  - 126
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/
LA  - ru
ID  - FPM_2012_17_1_a5
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A A. V. Mikhalev
%A T. V. Rodionov
%T The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 107-126
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/
%G ru
%F FPM_2012_17_1_a5
V. K. Zakharov; A. V. Mikhalev; T. V. Rodionov. The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 107-126. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/