Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_1_a5, author = {V. K. Zakharov and A. V. Mikhalev and T. V. Rodionov}, title = {The characterization of integrals with respect to arbitrary {Radon} measures by the boundedness indices}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {107--126}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/} }
TY - JOUR AU - V. K. Zakharov AU - A. V. Mikhalev AU - T. V. Rodionov TI - The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 107 EP - 126 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/ LA - ru ID - FPM_2012_17_1_a5 ER -
%0 Journal Article %A V. K. Zakharov %A A. V. Mikhalev %A T. V. Rodionov %T The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 107-126 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/ %G ru %F FPM_2012_17_1_a5
V. K. Zakharov; A. V. Mikhalev; T. V. Rodionov. The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 107-126. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a5/
[1] Burbaki N., Integrirovanie. Mery na kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977
[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd. inostr. lit., M., 1962
[3] Zakharov V. K., “Problema kharakterizatsii radonovskikh integralov”, Dokl. RAN, 385:6 (2002), 735–737 | MR | Zbl
[4] Zakharov V. K., “Problema Rissa–Radona kharakterizatsii integralov i slabaya kompaktnost radonovskikh mer”, Tr. Mat. in-ta im. V. A. Steklova RAN, 248, 2005, 106–116 | MR | Zbl
[5] Zakharov V. K., Mikhalëv A. V., “Integralnoe predstavlenie dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Fundament. i prikl. mat., 3:4 (1997), 1135–1172 | MR | Zbl
[6] Zakharov V. K., Mikhalëv A. V., “Problema integralnogo predstavleniya dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Dokl. RAN, 360:1 (1998), 13–15 | MR | Zbl
[7] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva”, Izv. RAN. Ser. mat., 63:5 (1999), 37–82 | DOI | MR | Zbl
[8] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva. II”, Izv. RAN. Ser. mat., 66:6 (2002), 3–18 | DOI | MR | Zbl
[9] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema Rissa–Radona–Freshe kharakterizatsii radonovskikh integralov: ogranichennye mery; polozhitelnye mery; bimery; obschie radonovskie mery”, Sovremennye problemy matematiki, mekhaniki i ikh prilozhenii, Materialy mezhdunar. konf., posv. 70-letiyu rektora MGU akademika V. A. Sadovnichego, Universitetskaya kniga, M., 2009, 91–92
[10] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Opisanie integralov po vsem radonovskim meram na proizvolnom khausdorfovom prostranstve”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 15-i Saratovskoi zimnei shkoly, posvyaschënnoi 125-letiyu so dnya rozhdeniya V. V. Golubeva i 100-letiyu SGU, SGU, Saratov, 2010, 76–77
[11] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema Rissa–Radona–Freshe kharakterizatsii integralov”, Uspekhi mat. nauk, 65:4 (2010), 153–178 | DOI | MR | Zbl
[12] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema kharakterizatsii obschikh radonovskikh integralov”, Dokl. RAN, 433:6 (2010), 731–735 | MR | Zbl
[13] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Opisanie radonovskikh integralov kak lineinykh funktsionalov”, Fundament. i prikl. mat., 16:8 (2010), 87–161 | MR
[14] Zakharov V. K., Rodionov T. V., “Klass ravnomernykh funktsii i ego sootnoshenie s klassom izmerimykh funktsii”, Mat. zametki, 84:6 (2008), 809–824 | DOI | MR | Zbl
[15] Khausdorf F., Teoriya mnozhestv, URSS, M., 2004
[16] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[17] Edwards R. E., “A theory of Radon measures on locally compact spaces”, Acta Math., 89 (1953), 133–164 | DOI | MR | Zbl
[18] Fremlin D. H., Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl
[19] Halmos P. R., Measure Theory, Van Nostrand, Princeton, 1950 | MR | Zbl
[20] Hausdorff F., Grundzüge der Mengenlehre, Weit, Leipzig, 1914
[21] Hewitt E., “Integration on locally compact spaces. I”, Univ. of Washington Publ. Math., 3 (1952), 71–75 | MR
[22] Hewitt E., Stromberg K., Real and Abstract Analysis, Springer, Berlin, 1965 | MR | Zbl
[23] Jacobs K., Measure and Integral, Academic Press, New York, 1978 | MR | Zbl
[24] Jech T., Set Theory, Springer Monographs Math., Springer, Berlin, 2002 | MR
[25] Kakutani S., “Concrete representation of abstract ($M$)-spaces”, Ann. Math. (2), 42 (1941), 994–1024 | DOI | MR | Zbl
[26] Radon J., “Theorie und Anwendungen der absolut additiven Mengenfunktionen”, Sitzungsber. Math.-Natur. Kl. Akad. Wiss. Wien., 122 (1913), 1295–1438 | Zbl
[27] Riesz F., “Sur les opérations fonctionelles linéaires”, C. R. Acad. Sci. Paris, 149 (1909), 974–977
[28] Semadeni Z., Banach Spaces of Continuous Functions, PWN, Warszawa, 1971 | Zbl
[29] Sierpiński W., “Sur les fonctions développables en séries absolument convergentes de fonctions continues”, Fund. Math., 2 (1921), 15–27 | Zbl
[30] Zakharov V. K., “Alexandrovian cover and Sierpińskian extension”, Studia Sci. Math. Hungar., 24:2–3 (1989), 93–117 | MR | Zbl