Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_1_a1, author = {A. R. Alimov}, title = {Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {23--32}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a1/} }
A. R. Alimov. Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a1/
[1] Alimov A. R., “Svyaznost solnts v prostranstve $c_0$”, Izv. RAN. Ser. mat., 69:4 (2005), 3–18 | DOI | MR | Zbl
[2] Alimov A. R., “Monotonnaya lineinaya svyaznost chebyshëvskikh mnozhestv v prostranstve $C(Q)$”, Mat. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl
[3] Alimov A. R., “Monotonno svyaznoe chebyshëvskoe mnozhestvo yavlyaetsya solntsem”, Trudy mezhdunar. konf., posvyaschënnoi 90-letiyu S. B. Stechkina (Moskva, MGU–MIAN, 23–26 avgusta 2010 g.), 2–3
[4] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. mat., 73:3 (2009), 23–66 | DOI | MR | Zbl
[5] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. mat., 68:4 (2004), 75–116 | DOI | MR | Zbl
[6] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Uspekhi mat. nauk, 28:6 (1973), 3–66 | MR | Zbl
[7] Garkavi A. L., Zamyatin V. N., “Ob uslovnom chebyshëvskom tsentre ogranichennogo mnozhestva nepreryvnykh funktsii”, Mat. zametki, 18:1 (1975), 67–76 | MR | Zbl
[8] Ivanov G. E., “Mnozhestva, slabo vypuklye po Vialyu i po Efimovu–Stechkinu”, Izv. RAN. Ser. mat., 69:6 (2005), 35–60 | DOI | MR | Zbl
[9] Ivanov G. E., Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006
[10] Berens H., Hetzelt L., “Die metrische Struktur der Sonnen in $\ell^\infty(n)$”, Aequationes Math., 27 (1984), 274–287 | DOI | MR | Zbl
[11] Brosowski B., Deutsch F., Lambert J., Morris P. D., “Chebychev sets which are not suns”, Math. Ann., 212:1 (1974), 89–101 | DOI | MR | Zbl
[12] Brown A. L., “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl
[13] Cheney E. W., Multivariate Approximation Theory: Selected Topics, SIAM, Philadelphia, 1986 | MR
[14] Franchetti C., Roversi S., Suns, M-connected sets and P-acyclic sets in Banach spaces, Preprint No 50139, Inst. di Mat. Appl. “G. Sansone”, 1988 | MR
[15] Vial J.-Ph., “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl