Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $M$ of a normed linear space $X$ is said to be $R$-weakly convex ($R>0$ is fixed) if the intersection $(D_R(x,y)\setminus\{x,y\})\cap M$ is nonempty for all $x,y\in M$, $0\|x-y\|2R$. Here $D_R(x,y)$ is the intersection of all the balls of radius $R$ that contain $x,y$. The paper is concerned with connectedness of $R$-weakly convex sets in $C(Q)$-spaces. It will be shown that any $R$-weakly convex subset $M$ of $C(Q)$ is locally $\mathrm m$-connected (locally Menger-connected) and each connected component of a boundedly compact $R$-weakly convex subset $M$ of $C(Q)$ is monotone path-connected and is a sun in $C(Q)$. Also, we show that a boundedly compact subset $M$ of $C(Q)$ is $R$-weakly convex for some $R>0$ if and only if $M$ is a disjoint union of monotonically path-connected suns in $C(Q)$, the Hausdorff distance between each pair of the components of $M$ being at least $2R$.
@article{FPM_2012_17_1_a1,
     author = {A. R. Alimov},
     title = {Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 23
EP  - 32
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a1/
LA  - ru
ID  - FPM_2012_17_1_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 23-32
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a1/
%G ru
%F FPM_2012_17_1_a1
A. R. Alimov. Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a1/

[1] Alimov A. R., “Svyaznost solnts v prostranstve $c_0$”, Izv. RAN. Ser. mat., 69:4 (2005), 3–18 | DOI | MR | Zbl

[2] Alimov A. R., “Monotonnaya lineinaya svyaznost chebyshëvskikh mnozhestv v prostranstve $C(Q)$”, Mat. sb., 197:9 (2006), 3–18 | DOI | MR | Zbl

[3] Alimov A. R., “Monotonno svyaznoe chebyshëvskoe mnozhestvo yavlyaetsya solntsem”, Trudy mezhdunar. konf., posvyaschënnoi 90-letiyu S. B. Stechkina (Moskva, MGU–MIAN, 23–26 avgusta 2010 g.), 2–3

[4] Balashov M. V., Ivanov G. E., “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. mat., 73:3 (2009), 23–66 | DOI | MR | Zbl

[5] Vasileva A. A., “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. mat., 68:4 (2004), 75–116 | DOI | MR | Zbl

[6] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Uspekhi mat. nauk, 28:6 (1973), 3–66 | MR | Zbl

[7] Garkavi A. L., Zamyatin V. N., “Ob uslovnom chebyshëvskom tsentre ogranichennogo mnozhestva nepreryvnykh funktsii”, Mat. zametki, 18:1 (1975), 67–76 | MR | Zbl

[8] Ivanov G. E., “Mnozhestva, slabo vypuklye po Vialyu i po Efimovu–Stechkinu”, Izv. RAN. Ser. mat., 69:6 (2005), 35–60 | DOI | MR | Zbl

[9] Ivanov G. E., Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006

[10] Berens H., Hetzelt L., “Die metrische Struktur der Sonnen in $\ell^\infty(n)$”, Aequationes Math., 27 (1984), 274–287 | DOI | MR | Zbl

[11] Brosowski B., Deutsch F., Lambert J., Morris P. D., “Chebychev sets which are not suns”, Math. Ann., 212:1 (1974), 89–101 | DOI | MR | Zbl

[12] Brown A. L., “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[13] Cheney E. W., Multivariate Approximation Theory: Selected Topics, SIAM, Philadelphia, 1986 | MR

[14] Franchetti C., Roversi S., Suns, M-connected sets and P-acyclic sets in Banach spaces, Preprint No 50139, Inst. di Mat. Appl. “G. Sansone”, 1988 | MR

[15] Vial J.-Ph., “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl