Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_8_a6, author = {G. Dolinar and A. E. Guterman and B. Kuzma}, title = {On the {Gibson} barrier for the {P\'olya} problem}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {73--86}, publisher = {mathdoc}, volume = {16}, number = {8}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a6/} }
G. Dolinar; A. E. Guterman; B. Kuzma. On the Gibson barrier for the P\'olya problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 73-86. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a6/
[1] Brualdi R. A., Shader B. L., “On sign-nonsingular matrices and the conversion of the permanent into the determinant”, Applied Geometry and Discrete Mathematics, The Victor Klee Festschrift on the Occasion of Professor Klee's 65th Birthday., DIMACS, Ser. Discret. Math. Theor. Comput. Sci., 4, Amer. Math. Soc., Providence; Assoc. Comp. Mach., New York, 1991, 117–134 | MR
[2] Brualdi R. A., Shader B. L., Matrices of Sign-Solvable Linear Systems, Cambridge Tracts Math., 116, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[3] Gibson P. M., “An identity between permanents and determinants”, Amer. Math. Mon., 76 (1969), 270–271 | DOI | MR | Zbl
[4] Gibson P. M., “Conversion of the permanent into the determinant”, Proc. Amer. Math. Soc., 27 (1971), 471–476 | DOI | MR | Zbl
[5] Klee V., Ladner R., Manber R., “Signsolvability revisited”, Linear Algebra Appl., 59 (1984), 132–157 | DOI | MR
[6] Little C. H. C., “A characterization of convertible $(0,1)$-matrices”, J. Combin. Theory Ser. B, 18 (1975), 187–208 | DOI | MR | Zbl
[7] Marcus M., Minc H., “On the relation between the determinant and the permanent”, Illinois J. Math., 5 (1961), 376–381 | MR | Zbl
[8] McCuaig W., “Pólya's permanent problem”, Electron. J. Combin., 11 (2004), R79 | MR | Zbl
[9] Minc H., Permanents, Addison-Wesley, 1978 | MR | Zbl
[10] Pólya G., “Aufgabe 424”, Arch. Math. Phys. Ser. 3, 20 (1913), 271
[11] Szegő G., “Lösung zu Aufgabe 424”, Arch. Math. Phys., 21 (1913), 291–292
[12] Valiant L. G., “The complexity of computing the permanent”, Theor. Comput. Sci., 8 (1979), 189–201 | DOI | MR | Zbl
[13] Vazirani V. V., Yannakakis M., “Pfaffian orientations, 0-1 permanents, and even cycles in directed graphs”, Discrete Appl. Math., 25 (1989), 179–190 | DOI | MR | Zbl