Totally conjugate orthogonal quasigroups and complete graphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the spectrum of quasigroups all conjugates of which are distinct and pairwise orthogonal. We call such quasigroups totally conjugate orthogonal quasigroups (for brevity, totCO-quasigroups). Every totCO-quasigroup defines the complete conjugate orthogonal Latin square graph $K_6$. Examples of totCO-quasigroups of different orders are given.
@article{FPM_2010_16_8_a1,
     author = {G. B. Belyavskaya and T. V. Popovich},
     title = {Totally conjugate orthogonal quasigroups and complete graphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/}
}
TY  - JOUR
AU  - G. B. Belyavskaya
AU  - T. V. Popovich
TI  - Totally conjugate orthogonal quasigroups and complete graphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 17
EP  - 26
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/
LA  - ru
ID  - FPM_2010_16_8_a1
ER  - 
%0 Journal Article
%A G. B. Belyavskaya
%A T. V. Popovich
%T Totally conjugate orthogonal quasigroups and complete graphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 17-26
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/
%G ru
%F FPM_2010_16_8_a1
G. B. Belyavskaya; T. V. Popovich. Totally conjugate orthogonal quasigroups and complete graphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 17-26. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl

[2] Belousov V. D., “Sistemy ortogonalnykh operatsii”, Mat. sb., 77(119):1 (1968), 38–58 | MR | Zbl

[3] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups Relat. Syst., 13:1 (2005), 25–72 | MR | Zbl

[4] Belyavskaya G. B., Diordiev A. D., “On some quasi-identities in finite quasigroups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 3(49), 19–32 | MR | Zbl

[5] Bennett F. E., “Latin squares with pairwise orthogonal conjugates”, Discrete Math., 36 (1981), 117–137 | DOI | MR | Zbl

[6] Bennett F. E., “On conjugate orthogonal idempotent Latin squares”, Ars Combinatoria, 19 (1985), 37–50 | MR

[7] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Math., 77 (1989), 29–50 | DOI | MR | Zbl

[8] Bennett F. E., Mendelsohn N. S., “Conjugate orthogonal Latin square graphs”, Congr. Numer., 23 (1979), 179–192 | MR | Zbl

[9] Bennett F. E., Zhang H., “Latin squares with self-orthogonal conjugates”, Discrete Math., 284 (2004), 45–55 | DOI | MR | Zbl

[10] Chaffer R. A., Lieberman D. J., Smith D. D., “The number of orthogonal conjugates of a quasigroup”, Congr. Numer., 35 (1982), 169–180 | MR | Zbl

[11] Déneš J., Keedwell A. D., Latin Squares and Their Applications, Académiai Kiado, Budapest; Academic Press, New York, 1974 | MR

[12] Evans T., “Algebraic structures associated with Latin squares and orthogonal arrays”, Congr. Numer., 13 (1975), 31–52 | MR

[13] Kepka T., Nemec P., “T-quasigroups. I”, Acta Univ. Carolin. Math. Phys., 12:1 (1971), 39–49 | MR

[14] Lindner C. C., Mendelsohn E., Mendelsohn N. S., Wolk B., “Orthogonal Latin square graphs”, J. Graph Theory, 3 (1973), 325–328 | DOI | MR

[15] Lindner C. C., Steedly D., “On the number of conjugates of a quasigroup”, Algebra Universalis, 5 (1975), 191–196 | DOI | MR | Zbl

[16] Mullen G., Shcherbacov V., “On orthogonality of binary operations and squares”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 2(48), 3–42 | MR

[17] Phelps K. T., “Conjugate orthogonal quasigroups”, J. Combin. Theory Ser. A, 25 (1978), 117–127 | DOI | MR | Zbl