Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_8_a1, author = {G. B. Belyavskaya and T. V. Popovich}, title = {Totally conjugate orthogonal quasigroups and complete graphs}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {17--26}, publisher = {mathdoc}, volume = {16}, number = {8}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/} }
TY - JOUR AU - G. B. Belyavskaya AU - T. V. Popovich TI - Totally conjugate orthogonal quasigroups and complete graphs JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 17 EP - 26 VL - 16 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/ LA - ru ID - FPM_2010_16_8_a1 ER -
G. B. Belyavskaya; T. V. Popovich. Totally conjugate orthogonal quasigroups and complete graphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 17-26. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/
[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl
[2] Belousov V. D., “Sistemy ortogonalnykh operatsii”, Mat. sb., 77(119):1 (1968), 38–58 | MR | Zbl
[3] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups Relat. Syst., 13:1 (2005), 25–72 | MR | Zbl
[4] Belyavskaya G. B., Diordiev A. D., “On some quasi-identities in finite quasigroups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 3(49), 19–32 | MR | Zbl
[5] Bennett F. E., “Latin squares with pairwise orthogonal conjugates”, Discrete Math., 36 (1981), 117–137 | DOI | MR | Zbl
[6] Bennett F. E., “On conjugate orthogonal idempotent Latin squares”, Ars Combinatoria, 19 (1985), 37–50 | MR
[7] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Math., 77 (1989), 29–50 | DOI | MR | Zbl
[8] Bennett F. E., Mendelsohn N. S., “Conjugate orthogonal Latin square graphs”, Congr. Numer., 23 (1979), 179–192 | MR | Zbl
[9] Bennett F. E., Zhang H., “Latin squares with self-orthogonal conjugates”, Discrete Math., 284 (2004), 45–55 | DOI | MR | Zbl
[10] Chaffer R. A., Lieberman D. J., Smith D. D., “The number of orthogonal conjugates of a quasigroup”, Congr. Numer., 35 (1982), 169–180 | MR | Zbl
[11] Déneš J., Keedwell A. D., Latin Squares and Their Applications, Académiai Kiado, Budapest; Academic Press, New York, 1974 | MR
[12] Evans T., “Algebraic structures associated with Latin squares and orthogonal arrays”, Congr. Numer., 13 (1975), 31–52 | MR
[13] Kepka T., Nemec P., “T-quasigroups. I”, Acta Univ. Carolin. Math. Phys., 12:1 (1971), 39–49 | MR
[14] Lindner C. C., Mendelsohn E., Mendelsohn N. S., Wolk B., “Orthogonal Latin square graphs”, J. Graph Theory, 3 (1973), 325–328 | DOI | MR
[15] Lindner C. C., Steedly D., “On the number of conjugates of a quasigroup”, Algebra Universalis, 5 (1975), 191–196 | DOI | MR | Zbl
[16] Mullen G., Shcherbacov V., “On orthogonality of binary operations and squares”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 2(48), 3–42 | MR
[17] Phelps K. T., “Conjugate orthogonal quasigroups”, J. Combin. Theory Ser. A, 25 (1978), 117–127 | DOI | MR | Zbl