Totally conjugate orthogonal quasigroups and complete graphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 17-26
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we study the spectrum of quasigroups all conjugates of which are distinct and pairwise orthogonal. We call such quasigroups totally conjugate orthogonal quasigroups (for brevity, totCO-quasigroups). Every totCO-quasigroup defines the complete conjugate orthogonal Latin square graph $K_6$. Examples of totCO-quasigroups of different orders are given.
@article{FPM_2010_16_8_a1,
     author = {G. B. Belyavskaya and T. V. Popovich},
     title = {Totally conjugate orthogonal quasigroups and complete graphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--26},
     year = {2010},
     volume = {16},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/}
}
TY  - JOUR
AU  - G. B. Belyavskaya
AU  - T. V. Popovich
TI  - Totally conjugate orthogonal quasigroups and complete graphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 17
EP  - 26
VL  - 16
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/
LA  - ru
ID  - FPM_2010_16_8_a1
ER  - 
%0 Journal Article
%A G. B. Belyavskaya
%A T. V. Popovich
%T Totally conjugate orthogonal quasigroups and complete graphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 17-26
%V 16
%N 8
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/
%G ru
%F FPM_2010_16_8_a1
G. B. Belyavskaya; T. V. Popovich. Totally conjugate orthogonal quasigroups and complete graphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 17-26. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a1/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl

[2] Belousov V. D., “Sistemy ortogonalnykh operatsii”, Mat. sb., 77(119):1 (1968), 38–58 | MR | Zbl

[3] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups Relat. Syst., 13:1 (2005), 25–72 | MR | Zbl

[4] Belyavskaya G. B., Diordiev A. D., “On some quasi-identities in finite quasigroups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 3(49), 19–32 | MR | Zbl

[5] Bennett F. E., “Latin squares with pairwise orthogonal conjugates”, Discrete Math., 36 (1981), 117–137 | DOI | MR | Zbl

[6] Bennett F. E., “On conjugate orthogonal idempotent Latin squares”, Ars Combinatoria, 19 (1985), 37–50 | MR

[7] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Math., 77 (1989), 29–50 | DOI | MR | Zbl

[8] Bennett F. E., Mendelsohn N. S., “Conjugate orthogonal Latin square graphs”, Congr. Numer., 23 (1979), 179–192 | MR | Zbl

[9] Bennett F. E., Zhang H., “Latin squares with self-orthogonal conjugates”, Discrete Math., 284 (2004), 45–55 | DOI | MR | Zbl

[10] Chaffer R. A., Lieberman D. J., Smith D. D., “The number of orthogonal conjugates of a quasigroup”, Congr. Numer., 35 (1982), 169–180 | MR | Zbl

[11] Déneš J., Keedwell A. D., Latin Squares and Their Applications, Académiai Kiado, Budapest; Academic Press, New York, 1974 | MR

[12] Evans T., “Algebraic structures associated with Latin squares and orthogonal arrays”, Congr. Numer., 13 (1975), 31–52 | MR

[13] Kepka T., Nemec P., “T-quasigroups. I”, Acta Univ. Carolin. Math. Phys., 12:1 (1971), 39–49 | MR

[14] Lindner C. C., Mendelsohn E., Mendelsohn N. S., Wolk B., “Orthogonal Latin square graphs”, J. Graph Theory, 3 (1973), 325–328 | DOI | MR

[15] Lindner C. C., Steedly D., “On the number of conjugates of a quasigroup”, Algebra Universalis, 5 (1975), 191–196 | DOI | MR | Zbl

[16] Mullen G., Shcherbacov V., “On orthogonality of binary operations and squares”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, no. 2(48), 3–42 | MR

[17] Phelps K. T., “Conjugate orthogonal quasigroups”, J. Combin. Theory Ser. A, 25 (1978), 117–127 | DOI | MR | Zbl