Completely integrally closed modules and rings.~III
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 205-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study rings $A$ over which all cyclic right modules are completely integrally closed. The complete answer is obtained if either $A$ is a semiperfect ring or each ring direct factor of $A$ that is a domain is right bounded.
@article{FPM_2010_16_7_a9,
     author = {A. A. Tuganbaev},
     title = {Completely integrally closed modules and {rings.~III}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--220},
     publisher = {mathdoc},
     volume = {16},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a9/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Completely integrally closed modules and rings.~III
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 205
EP  - 220
VL  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a9/
LA  - ru
ID  - FPM_2010_16_7_a9
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Completely integrally closed modules and rings.~III
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 205-220
%V 16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a9/
%G ru
%F FPM_2010_16_7_a9
A. A. Tuganbaev. Completely integrally closed modules and rings.~III. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 205-220. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a9/

[1] Tuganbaev A. A., “Vpolne tselozamknutye moduli i koltsa”, Fundament. i prikl. mat., 15:8 (2009), 213–228 | MR

[2] Tuganbaev A. A., “Vpolne tselozamknutye moduli i koltsa. II”, Fundament. i prikl. mat., 16:3 (2010), 237–243 | MR

[3] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, M., 1979 | MR

[4] Brungs H. H., Törner G., “Chain rings and prime ideals”, Arch. Math., 27 (1976), 253–260 | DOI | MR | Zbl

[5] Goel V. K., Jain S. K., “$\pi$-injective modules and rings whose cyclics are $\pi$-injective”, Commun. Algebra, 6:1 (1978), 59–73 | DOI | MR | Zbl

[6] Jeremy L., “Modules et anneaux quasi-continus”, Can. Math. Bull., 17:2 (1974), 217–228 | DOI | MR | Zbl

[7] Koehler A., “Rings with quasi-injective cyclic modules”, Quart. J. Math. Oxford Ser. 2, 25 (1974), 51–55 | DOI | MR | Zbl

[8] Osofsky B. L., “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | DOI | MR | Zbl

[9] Osofsky B. L., Smith P. F., “Cyclic modules whose quotients have all complement submodules direct summands”, J. Algebra, 139 (1991), 342–354 | DOI | MR | Zbl