Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_7_a9, author = {A. A. Tuganbaev}, title = {Completely integrally closed modules and {rings.~III}}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {205--220}, publisher = {mathdoc}, volume = {16}, number = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a9/} }
A. A. Tuganbaev. Completely integrally closed modules and rings.~III. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 205-220. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a9/
[1] Tuganbaev A. A., “Vpolne tselozamknutye moduli i koltsa”, Fundament. i prikl. mat., 15:8 (2009), 213–228 | MR
[2] Tuganbaev A. A., “Vpolne tselozamknutye moduli i koltsa. II”, Fundament. i prikl. mat., 16:3 (2010), 237–243 | MR
[3] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, M., 1979 | MR
[4] Brungs H. H., Törner G., “Chain rings and prime ideals”, Arch. Math., 27 (1976), 253–260 | DOI | MR | Zbl
[5] Goel V. K., Jain S. K., “$\pi$-injective modules and rings whose cyclics are $\pi$-injective”, Commun. Algebra, 6:1 (1978), 59–73 | DOI | MR | Zbl
[6] Jeremy L., “Modules et anneaux quasi-continus”, Can. Math. Bull., 17:2 (1974), 217–228 | DOI | MR | Zbl
[7] Koehler A., “Rings with quasi-injective cyclic modules”, Quart. J. Math. Oxford Ser. 2, 25 (1974), 51–55 | DOI | MR | Zbl
[8] Osofsky B. L., “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | DOI | MR | Zbl
[9] Osofsky B. L., Smith P. F., “Cyclic modules whose quotients have all complement submodules direct summands”, J. Algebra, 139 (1991), 342–354 | DOI | MR | Zbl