Typical equivalence of linear groups and other algebraic systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 181-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the notion of typical equivalence introduced by B. I. Plotkin. We give some examples of elementarily equivalent objects that are not typically equivalent and show two ways to construct nonisomorphic typically equivalent algebras. We also prove A. I. Maltsev's theorem on elementary equivalence of linear groups over fields for the case of typical equivalence.
@article{FPM_2010_16_7_a7,
     author = {A. D. Maksimov},
     title = {Typical equivalence of linear groups and other algebraic systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {181--196},
     publisher = {mathdoc},
     volume = {16},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a7/}
}
TY  - JOUR
AU  - A. D. Maksimov
TI  - Typical equivalence of linear groups and other algebraic systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 181
EP  - 196
VL  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a7/
LA  - ru
ID  - FPM_2010_16_7_a7
ER  - 
%0 Journal Article
%A A. D. Maksimov
%T Typical equivalence of linear groups and other algebraic systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 181-196
%V 16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a7/
%G ru
%F FPM_2010_16_7_a7
A. D. Maksimov. Typical equivalence of linear groups and other algebraic systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 181-196. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a7/

[1] Vereschagin N. K., Shen A., Nachala teorii mnozhestv, M., 1999

[2] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[3] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, Novosibirsk, 1961, 110–132 | Zbl

[4] B. Plotkin, G. Zhitomirski, “Some logical invariants of algebras and logical relations between algebras”, Algebra i analiz, 19:5 (2007), 214–245 | MR

[5] Plotkin B., Isotyped algebras, Preprint