Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_7_a0, author = {A. N. Abyzov and A. A. Tuganbaev}, title = {Homomorphisms close to regular and their applications}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--38}, publisher = {mathdoc}, volume = {16}, number = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a0/} }
A. N. Abyzov; A. A. Tuganbaev. Homomorphisms close to regular and their applications. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 3-38. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a0/
[1] Abyzov A. N., “Vpolne idempotentnost Hom”, Izv. vyssh. uchebn. zaved. Matematika, 2011, no. 8, 3–8 | MR | Zbl
[2] Kash F., Moduli i koltsa, Mir, M., 1981 | MR
[3] Skornyakov L. A., Dedekindovy struktury s dopolneniyami i regulyarnye koltsa, M., 1961 | Zbl
[4] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009
[5] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer, New York, 1991 | MR | Zbl
[6] Andruszkiewicz R. R., Puczylowski E. R., “Right fully idempotent rings need not be left fully idempotent”, Glasgow Math. J., 37 (1995), 155–157 | DOI | MR | Zbl
[7] Ara P., Perera F., “Multipliers of von Neumann regular rings”, Commun. Algebra, 28:7 (2000), 3359–3385 | DOI | MR | Zbl
[8] Assem I., Skowronski A., Simson D., Elements of the Representation Theory of Associative Algebras, v. 1, London Math. Soc. Student Texts, 65, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[9] Auslander M., Reiten I., Smalo S., Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., 36, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[10] Azumaya G., “Some characterizations of regular modules”, Publ. Mat., 34 (1990), 241–248 | DOI | MR | Zbl
[11] Baccella G., “Von Neumann regularity of V-rings with Artinian primitive factor rings”, Proc. Amer. Math. Soc., 103:3 (1988), 747–749 | MR | Zbl
[12] Baccella G., “Semi-Artinian V-rings and semi-Artinian von Neumann regular rings”, J. Algebra, 173 (1995), 587–612 | DOI | MR | Zbl
[13] Beidar K. I., “On rings with zero total”, Contrib. Algebra Geom., 38 (1997), 233–239 | MR | Zbl
[14] Beidar K. I., Kasch F., “Good conditions for the total”, Int. Symp. on Ring Theory (Kyongju, 1999), Trends Math., eds. G. F. Birkenmeier, J. K. Park, Y. S. Park, Birkhäuser, Boston, 2001, 43–65 | MR | Zbl
[15] Birkenmeier G. F., Kim J. Y., Park J. K., “A connection between weak regularity and the simplicity of prime factor rings”, Proc. Amer. Math. Soc., 122 (1994), 53–58 | DOI | MR | Zbl
[16] Birkenmeier G. F., Kim J. Y., Park J. K., “Regularity conditions and the simplicity of prime factor rings”, J. Pure Appl. Algebra, 115 (1997), 213–230 | DOI | MR | Zbl
[17] Brown B., McCoy N. H., “The maximal regular ideal of a ring”, Proc. Amer. Math. Soc., 1:2 (1950), 165–171 | DOI | MR | Zbl
[18] Burgess W. D., Stephenson W., “An analogue of the Pierce sheaf for noncommutative rings”, Commun. Algebra, 6:9 (1978), 863–886 | DOI | MR | Zbl
[19] Camillo V., Xiao Y. F., “Weakly regular rings”, Commun. Algebra, 22 (1994), 4095–4112 | DOI | MR | Zbl
[20] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers Math., Birkhäuser, Boston, 2006 | MR | Zbl
[21] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman, London, 1994 | Zbl
[22] Dung N. V., Smith P. F., “On semi-Artinian V-modules”, J. Pure Appl. Algebra, 82:1 (1992), 27–37 | DOI | MR | Zbl
[23] Goodearl K. R., Von Neumann Regular Rings, Robert E. Krieger, Malabar, 1991 | MR
[24] Hamza H., “$I_0$-rings and $I_0$-modules”, Math. J. Okayama Univ., 40 (1998), 91–97 | MR
[25] Hirano Y., “Regular modules and V-modules”, Hiroshima Math. J., 11:1 (1981), 125–142 | MR | Zbl
[26] Hirano Y., “Regular modules and V-modules. II”, Math. J. Okayama Univ., 23:2 (1981), 131–135 | MR | Zbl
[27] Hirano Y., “On injective hulls of simple modules”, J. Algebra, 225 (2000), 299–308 | DOI | MR | Zbl
[28] Jayaraman M., Vanaja N., “Generalization of regular modules”, Commun. Algebra, 35 (2007), 3331–3345 | DOI | MR | Zbl
[29] Kaplansky I., “Rings with a polynomial identity”, Bull. Amer. Math. Soc., 54 (1948), 575–580 | DOI | MR | Zbl
[30] Kasch F., “Regular substructures of Hom”, Appl. Categ. Structures, 16 (2008), 159–166 | DOI | MR | Zbl
[31] Kasch F., Mader A., Rings, Modules and the Total, Frontiers Math., Birkhäuser, Basel, 2004 | DOI | MR | Zbl
[32] Kasch F., Mader A., “Regularity and substructures of Hom”, Commun. Algebra, 34:4 (2006), 1459–1478 | DOI | MR | Zbl
[33] Kelly G. M., “On the radical of a category”, J. Austral. Math. Soc., 4 (1964), 299–307 | DOI | MR | Zbl
[34] Keskin D., “When is a fully idempotent module a V-module?”, Bull. Math. Soc. Sci. Math. Roumanie, 53:4 (2010), 387–391 | MR | Zbl
[35] Levitzki J., “On the structure of algebraic algebras and related rings”, Trans. Amer. Math. Soc., 74:3 (1953), 384–409 | DOI | MR | Zbl
[36] Mabuchi T., “Weakly regular modules”, Osaka J. Math., 17 (1980), 35–40 | MR | Zbl
[37] Mohamed S., Muller B. J., Continuous and Discrete Modules, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[38] Von Neumann J., “On regular rings”, Proc. Nat. Acad. Sci. U.S.A., 22 (1936), 707–713 | DOI | Zbl
[39] Von Neumann J., Continuous Geometry, Princeton Univ. Press, Princeton, 1960 | MR | Zbl
[40] Nicholson W. K., “I-rings”, Trans. Amer. Math. Soc., 207 (1975), 361–373 | MR | Zbl
[41] Nicholson W. K., “Semiregular modules and rings”, Can. J. Math., 28:5 (1976), 1105–1120 | DOI | MR | Zbl
[42] Nicholson W. K., Zhou Y., “Semiregular morphisms”, Commun. Algebra, 34 (2006), 219–233 | DOI | MR | Zbl
[43] Ramamurthi V. S., “Weakly regular rings”, Can. Math. Bull., 16 (1973), 317–321 | DOI | MR | Zbl
[44] Ramamurthi V. S., “A note on regular modules”, Bull. Austral. Math. Soc., 11 (1974), 359–364 | DOI | MR | Zbl
[45] Schroer J., “On the infinite radical of a module category”, Proc. London Math. Soc., 81 (2000), 651–674 | DOI | MR | Zbl
[46] Talebi Y., Vanaja N., “Copolyform modules”, Commun. Algebra, 30 (2002), 1461–1473 | DOI | MR | Zbl
[47] Tjukavkin D. V., “Rings all of whose one-sided ideals are generated by idempotents”, Commun. Algebra, 17:5 (1989), 1193–1198 | DOI | MR | Zbl
[48] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl
[49] Tuganbaev A. A., “Semiregular, weakly regular, and $\pi$-regular rings”, J. Math. Sci., 109:3 (2002), 1509–1588 | DOI | MR | Zbl
[50] Ware R., “Endomorphism rings of projective modules”, Trans. Amer. Math. Soc., 155 (1971), 233–256 | DOI | MR | Zbl
[51] Watters J. F., “Loewy series, V-modules and trace ideals”, Commun. Algebra, 27:12 (1999), 5951–5965 | DOI | MR | Zbl
[52] Wisbauer R., “Co-semisimple modules and nonassociative V-rings”, Commun. Algebra, 5 (1977), 1193–1209 | DOI | MR | Zbl
[53] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl
[54] Zelmanowitz J., “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl
[55] Zhou Y., “On (semi)regularity and the total of rings and modules”, J. Algebra, 322 (2009), 562–578 | DOI | MR | Zbl