Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_6_a7, author = {I. D. Kan}, title = {Methods for estimating of continuants}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {95--108}, publisher = {mathdoc}, volume = {16}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a7/} }
I. D. Kan. Methods for estimating of continuants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 95-108. http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a7/
[1] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998
[2] Dushistova A. A., Moschevitin N. G., “O proizvodnoi funktsii Minkovskogo $?(x)$”, Fundament. i prikl. mat., 16:6 (2010), 33–44
[3] Kan I. D., “Utochnenie pravila sravneniya kontinuantov”, Diskret. mat., 12:3 (2000), 72–75 | DOI | MR | Zbl
[4] Knut D., Iskusstvo programmirovaniya, Vilyams, M., 2006–2008
[5] Khinchin A. Ya., Tsepnye drobi, Fizmatgiz, M., 1961
[6] Cusick T. W., “Continuants with bounded digits”, Mathematika, 24 (1977), 166–172 | DOI | MR
[7] Cusick T. W., “Continuants with bounded digits. II”, Mathematika, 25 (1978), 107–109 | DOI | MR | Zbl
[8] Cusick T. W., “Continuants with bounded digits. III”, Monatsh. Math., 99 (1985), 105–109 | DOI | MR | Zbl
[9] Good I. J., “The fractional dimension theory of continued fractions”, Proc. Cambridge Philos. Soc., 37 (1941), 199–228 | DOI | MR | Zbl
[10] Hensley D., “The distribution of badly approximable numbers and continuants with bounded digits”, Proc. of the Int. Number Theory Conf. (Univ. Laval, Quebec City/Canada, July 5–18, 1987), eds. J.-M. de Koninck, C. Levesque, Walter de Gruyter, Berlin, 1989, 371–385 | MR
[11] Hensley D., “The distribution of badly approximable rationals and continuants with bounded digits. II”, J. Number Theory, 34:3 (1990), 293–334 | DOI | MR | Zbl
[12] Motzkin T. S., Straus E. G., “Some combinatorial extremum problems”, Proc. Am. Math. Soc., 7 (1956), 1014–1031 | DOI | MR