Methods for estimating of continuants
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with special sets of continuants occuring in applications. For each of these sets, the problem of finding the maximal and minimal continuants is solved. Methods of finding these extrema are singled out and grouped. This results in the methods of basic permutations, quadratic irrationalities, unit variation, and majorizing inequalities. The lasted named one is the only method involving new ideas, the remaining ones were already examined in parts.
@article{FPM_2010_16_6_a7,
     author = {I. D. Kan},
     title = {Methods for estimating of continuants},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a7/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - Methods for estimating of continuants
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 95
EP  - 108
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a7/
LA  - ru
ID  - FPM_2010_16_6_a7
ER  - 
%0 Journal Article
%A I. D. Kan
%T Methods for estimating of continuants
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 95-108
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a7/
%G ru
%F FPM_2010_16_6_a7
I. D. Kan. Methods for estimating of continuants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 95-108. http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a7/

[1] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998

[2] Dushistova A. A., Moschevitin N. G., “O proizvodnoi funktsii Minkovskogo $?(x)$”, Fundament. i prikl. mat., 16:6 (2010), 33–44

[3] Kan I. D., “Utochnenie pravila sravneniya kontinuantov”, Diskret. mat., 12:3 (2000), 72–75 | DOI | MR | Zbl

[4] Knut D., Iskusstvo programmirovaniya, Vilyams, M., 2006–2008

[5] Khinchin A. Ya., Tsepnye drobi, Fizmatgiz, M., 1961

[6] Cusick T. W., “Continuants with bounded digits”, Mathematika, 24 (1977), 166–172 | DOI | MR

[7] Cusick T. W., “Continuants with bounded digits. II”, Mathematika, 25 (1978), 107–109 | DOI | MR | Zbl

[8] Cusick T. W., “Continuants with bounded digits. III”, Monatsh. Math., 99 (1985), 105–109 | DOI | MR | Zbl

[9] Good I. J., “The fractional dimension theory of continued fractions”, Proc. Cambridge Philos. Soc., 37 (1941), 199–228 | DOI | MR | Zbl

[10] Hensley D., “The distribution of badly approximable numbers and continuants with bounded digits”, Proc. of the Int. Number Theory Conf. (Univ. Laval, Quebec City/Canada, July 5–18, 1987), eds. J.-M. de Koninck, C. Levesque, Walter de Gruyter, Berlin, 1989, 371–385 | MR

[11] Hensley D., “The distribution of badly approximable rationals and continuants with bounded digits. II”, J. Number Theory, 34:3 (1990), 293–334 | DOI | MR | Zbl

[12] Motzkin T. S., Straus E. G., “Some combinatorial extremum problems”, Proc. Am. Math. Soc., 7 (1956), 1014–1031 | DOI | MR