Hyperbolas over two-dimensional Fibonacci quasilattices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 45-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the number $n_s(\alpha,\beta;X)$ of points $(x_1,x_2)$ in the two-dimensional Fibonacci quasilattices $\mathcal F^2_m$ of level $m=0,1,2,\dots$ lying on the hyperbola $x_1^2-\alpha x_2^2=\beta$ and such that $0\leq x_1\leq X$, $x_2\geq0$, the asymptotic formula $$ n_s(\alpha,\beta;X)\sim c_s(\alpha,\beta)\ln X\quad\text{as}\quad X\to\infty $$ is established, the coefficient $c_s(\alpha,\beta)$ is calculated exactly. Using this, the following result is obtained. Let $F_m$ be the Fibonacci numbers, $A_i\in\mathbb N$, $i=1,2$, and let $\overleftarrow A_i$ be the shift of $A_i$ in the Fibonacci numeral system. Then the number $n_s(X)$ of all solutions $(A_1,A_2)$ of the Diophantine system $$ \left\{ \begin{aligned} ^2+\overleftarrow A_1^2-2A_2\overleftarrow A_2+\overleftarrow A_2^2=F_{2s},\\ \overleftarrow A_1^2-2A_1\overleftarrow A_1+A_2^2-2A_2\overleftarrow A_2+2\overleftarrow A_2^2=F_{2s-1}, \end{aligned} \right. $$ $0\leq A_1\leq X$, $A_2\geq0$, satisfies the asymptotic formula $$ n_s(X)\sim\frac{c_s}{\mathrm{arcosh}(1/\tau)}\ln X\quad\text{as}\quad X\to\infty. $$ Here $\tau=(-1+\sqrt5)/2$ is the golden ratio, and $c_s=1/2$ or $1$ for $s=0$ or $s\geq1$, respectively.
@article{FPM_2010_16_6_a4,
     author = {V. G. Zhuravlev},
     title = {Hyperbolas over two-dimensional {Fibonacci} quasilattices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {45--62},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a4/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Hyperbolas over two-dimensional Fibonacci quasilattices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 45
EP  - 62
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a4/
LA  - ru
ID  - FPM_2010_16_6_a4
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Hyperbolas over two-dimensional Fibonacci quasilattices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 45-62
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a4/
%G ru
%F FPM_2010_16_6_a4
V. G. Zhuravlev. Hyperbolas over two-dimensional Fibonacci quasilattices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 45-62. http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a4/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[2] Zhuravlëv V. G., “Summy kvadratov nad $\circ$-koltsom Fibonachchi”, Zap. nauch. sem. Sankt-Peterburg. otd-niya Mat. in-ta im. V. A. Steklova RAN, 337, 2006, 165–190 | MR | Zbl

[3] Zhuravlëv V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 89–122 | DOI | MR | Zbl

[4] Zhuravlëv V. G., “Odnomernye kvazireshëtki Fibonachchi i ikh prilozheniya k diofantovym uravneniyam i algoritmu Evklida”, Algebra i analiz, 19:3 (2007), 151–182 | MR

[5] Matveev E. M., “Ob osnovnykh edinitsakh nekotorykh polei”, Mat. sb., 183:7 (1992), 35–48 | MR | Zbl

[6] Buchmann J., “On the computation of unites and class numbers by a generalization of Lagrange's algorithm”, J. Number Theory, 26:1 (1987), 8–30 | DOI | MR | Zbl

[7] Leprévost F., Pohst M., Schöpp A., “Units in some parametric families of quartic fields”, J. Théor. Nombres Bordeaux, 56 (2002), 1–13

[8] Meyer Y., Algebraic Numbers and Harmonic Analysis, North-Holland Math. Library, 2, North-Holland, Amsterdam, 1972 | MR | Zbl

[9] Moody R. V., “Meyer sets and their duals”, The Mathematical of Long-Range Aperiodic Order, Proc. of the NATO Advanced Study Institute (Waterloo, Ontario, Canada, August 21 – September 1, 1995), NATO ASI Ser., Ser. C, Math. Phys. Sci., 489, ed. R. V. Moody, Kluwer Academic, Dordrecht, 1997, 403–441 | MR | Zbl

[10] Moody R. V., “Model sets: a survey”, From Quasicrystals to More Complex Systems (Les Houches School, February 23–March 6, 1998), EPD Science, Les Ulis, Springer, Berlin, 2000, 145–166 | DOI

[11] Pohst M., Computational Algebraic Number Theory, Birhäuser, Basel, 1993 | MR | Zbl

[12] Pohst M., Zassenhaus H., “On effective computation of fundamental unites”, Math. Comp., 38 (1982), 293–329 | DOI | MR | Zbl

[13] Shimura G., “The number of representations of an integer by a quadratic form”, Duke Math. J., 100:1 (1999), 59–92 | DOI | MR | Zbl

[14] Shimura G., “The representation of integers as sums of squares”, Am. J. Math., 124 (2002), 1059–1081 | DOI | MR | Zbl

[15] Shimura G., “Quadratic Diophantine equations, the class number, and the mass formula”, Bull. Am. Math. Soc., 43:3 (2006), 285–304 | DOI | MR | Zbl