On the derivative of the Minkowski question mark function~$?(x)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 33-44
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $x=[0;a_1,a_2,\dots]$ be the regular continued fraction expansion an irrational number $x\in[0,1]$. For the derivative of the Minkowski function $?(x)$ we prove that $?'(x)=+\infty$, provided that $\limsup_{t\to\infty}\frac{a_1+\dots+a_t}t\kappa_1=\frac{2\log\lambda_1}{\log 2} = 1.388^+$, and $?'(x) = 0$, provided that $\liminf\limits_{t\to \infty}\frac{a_1+\dots+a_t}t>\kappa_2=\frac{4L_5-5L_4}{L_5-L_4}= 4.401^+$, where $L_j=\log\bigl(\frac{j+\sqrt{j^2+4}}2\bigr)-j\cdot\frac{\log2}2$. Constants $\kappa_1$, $\kappa_2$ are the best possible. It is also shown that $?'(x)=+\infty$ for all $x$ with partial quotients bounded by $4$.
@article{FPM_2010_16_6_a3,
author = {A. A. Dushistova and N. G. Moshchevitin},
title = {On the derivative of the {Minkowski} question mark function~$?(x)$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {33--44},
publisher = {mathdoc},
volume = {16},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a3/}
}
TY - JOUR AU - A. A. Dushistova AU - N. G. Moshchevitin TI - On the derivative of the Minkowski question mark function~$?(x)$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 33 EP - 44 VL - 16 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a3/ LA - ru ID - FPM_2010_16_6_a3 ER -
A. A. Dushistova; N. G. Moshchevitin. On the derivative of the Minkowski question mark function~$?(x)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 33-44. http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a3/