Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_6_a3, author = {A. A. Dushistova and N. G. Moshchevitin}, title = {On the derivative of the {Minkowski} question mark function~$?(x)$}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {33--44}, publisher = {mathdoc}, volume = {16}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a3/} }
TY - JOUR AU - A. A. Dushistova AU - N. G. Moshchevitin TI - On the derivative of the Minkowski question mark function~$?(x)$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 33 EP - 44 VL - 16 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a3/ LA - ru ID - FPM_2010_16_6_a3 ER -
A. A. Dushistova; N. G. Moshchevitin. On the derivative of the Minkowski question mark function~$?(x)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 33-44. http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a3/
[1] Jenkinson O., “On the density of Hausdorff dimension of bounded type continued fraction sets: the Texan conjecture”, Stoch. Dyn., 4 (2004), 63–76 | DOI | MR | Zbl
[2] Kan I. D., “Refining of the comparison rule for continuants”, Discrete Math. Appl., 10:5 (2000), 477–480 | DOI | MR | Zbl
[3] Kesseböhmer M., Stratmann B. O., Fractal analysis for sets of nondifferentiability of Minkowski question mark function, 2007, arXiv: 0706.0453v1[math.DS]
[4] Kinney J. R., “Note on a singular function of Minkowski”, Proc. Am. Math. Soc., 11 (1960), 788–789 | DOI | MR
[5] Minkowski H., Gesammelte Abhandlungen, v. 2, 1911
[6] Motzkin T. S., Straus E. G., “Some combinatorial extremum problems”, Proc. Am. Math. Soc., 7 (1956), 1014–1021 | DOI | MR
[7] Paradis J., Viader P., Bibiloni L., “A new light on Minkowski's $?(x)$ function”, J. Number Theory, 73 (1998), 212–227 | DOI | MR | Zbl
[8] Paradis J., Viader P., Bibiloni L., “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253 (2001), 107–125 | DOI | MR | Zbl
[9] Salem R., “On some singular monotone functions which are strictly increasing”, Trans. Am. Math. Soc., 53 (1943), 427–439 | DOI | MR | Zbl