On the Pyatetskii-Shapiro normality criterion for continued fractions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 177-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analogues of the Pyatetskii-Shapiro normality criterion for continued fractions and for $f$-expandings with finite initial tiling are established, improving some results by Moshchevitin and Shkredov obtained in the 2002 paper “On Pyatetskii-Shapiro criterion of normality”.
@article{FPM_2010_16_6_a14,
     author = {I. D. Shkredov},
     title = {On the {Pyatetskii-Shapiro} normality criterion for continued fractions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {177--188},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a14/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On the Pyatetskii-Shapiro normality criterion for continued fractions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 177
EP  - 188
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a14/
LA  - ru
ID  - FPM_2010_16_6_a14
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On the Pyatetskii-Shapiro normality criterion for continued fractions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 177-188
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a14/
%G ru
%F FPM_2010_16_6_a14
I. D. Shkredov. On the Pyatetskii-Shapiro normality criterion for continued fractions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 177-188. http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a14/

[1] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[2] Kachurovskii A. G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, Uspekhi mat. nauk, 51:4 (1996), 73–124 | DOI | MR | Zbl

[3] Moschevitin N. G, Shkredov I. D., “O kriterii normalnosti Pyatetskogo-Shapiro”, Mat. zametki, 73:4 (2003), 577–589 | DOI | MR | Zbl

[4] Postnikov A. G., “Arifmeticheskoe modelirovanie sluchainykh protsessov”, Tr. MIAN SSSR, 57, 1960, 3–84 | MR | Zbl

[5] Postnikov A. G., “Ergodicheskie voprosy teorii sravnenii i teorii diofantovykh priblizhenii”, Tr. MIAN SSSR, 82, 1966, 3–112 | MR | Zbl

[6] Pyatetskii-Shapiro I. I., “O zakonakh raspredeleniya drobnykh dolei pokazatelnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:1 (1951), 47–52 | MR | Zbl

[7] Pyatetskii-Shapiro I. I., “O raspredelenii drobnykh dolei pokazatelnoi funktsii”, Uchënye zapiski Moskovskogo gosudarstvennogo pedagogicheskogo instituta im. V. I. Lenina, 58:2 (1957), 312–322

[8] Khinchin A. Ya., Tsepnye drobi, Nauka, M., 1978 | MR

[9] Heinrich L., “Mixing properties and central limit theorem for a class of non-identical piecewise monotonic $C^2$-transformations”, Math. Nachr., 181 (1996), 185–214 | DOI | MR | Zbl

[10] Khintchine A., “Zur metrischen Kettenbruchtheorie”, Compositio Math., 3 (1936), 276–286 | MR

[11] Kifer Y., Peres Y., Weiss B., “A dimension gap for continued fractions with independent digits”, Israel J. Math., 124 (2001), 61–76 | DOI | MR | Zbl

[12] Kinney J. R., Pitcher T. S., “The dimension of some sets defined in terms of $f$-expansions”, Z. Wahrsch. Verw. Gebiete, 4 (1966), 293–315 | DOI | MR | Zbl

[13] Von Neumann J., “Physical applications of the ergodic hypothesis”, Proc. Nat. Acad. Sci. U.S.A, 18 (1932), 263–266 | DOI | Zbl

[14] Philipp W., “Some metrical theorems in number theory. II”, Duke Math. J., 37 (1970), 447–458 | DOI | MR | Zbl

[15] Renyi A., “Representations for real numbers and their ergodic properties”, Acta Math. Acad. Sci. Hungar., 8 (1957), 477–493 | DOI | MR | Zbl

[16] Szüsz P., “Über einen Kusminschen satz”, Acta Math. Acad. Sci. Hungar., 12 (1961), 447–453 | DOI | MR | Zbl

[17] Walters P., “Invariant measures and equilibrium states for some mapping which expand distances”, Trans. Am. Math. Soc., 236 (1978), 121–153 | DOI | MR