Density modulo~1 of lacunary and sublacunary sequences: application of Peres--Schlag's construction
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 117-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the existence of badly approximable numbers in problems involving lacunary or sublacunary sequences. The principal results depend upon Peres–Schlag's method.
@article{FPM_2010_16_5_a9,
     author = {N. G. Moshchevitin},
     title = {Density modulo~1 of lacunary and sublacunary sequences: application of {Peres--Schlag's} construction},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {117--138},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a9/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
TI  - Density modulo~1 of lacunary and sublacunary sequences: application of Peres--Schlag's construction
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 117
EP  - 138
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a9/
LA  - ru
ID  - FPM_2010_16_5_a9
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%T Density modulo~1 of lacunary and sublacunary sequences: application of Peres--Schlag's construction
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 117-138
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a9/
%G ru
%F FPM_2010_16_5_a9
N. G. Moshchevitin. Density modulo~1 of lacunary and sublacunary sequences: application of Peres--Schlag's construction. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 117-138. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a9/

[1] Akhunzhanov R. K., Moschevitin N. G., “O khromaticheskom chisle distantsionnogo grafa, svyazannogo s lakunarnoi posledovatelnostyu”, Dokl. RAN, 397:3 (2004), 295–296 | MR

[2] Akhunzhanov R. K., Moschevitin N. G., “O raspredelenii po modulyu 1 subeksponentsialnykh posledovatelnostei”, Mat. zametki, 77:6 (2005), 803–813 | DOI | MR | Zbl

[3] Moschevitin N. G., “O sublakunarnykh posledovatelnostyakh i vyigryshnykh mnozhestvakh”, Mat. zametki, 78:4 (2005), 634–637 | DOI | MR | Zbl

[4] Moschevitin N. G., Raigorodskii A. M., “O raskraskakh prostranstva $\mathbb R^n$ s neskolkimi zapreschënnymi rasstoyaniyami”, Mat. zametki, 81:5 (2007), 733–744 | DOI | MR | Zbl

[5] Raigorodskii A. M., “Problema Borsuka i khromaticheskie chisla metricheskikh prostranstv”, Uspekhi mat. nauk, 56:1 (2001), 107–146 | DOI | MR | Zbl

[6] Raigorodskii A. M., “Problema Erdësha–Khadvigera i khromaticheskie chisla konechnykh geometricheskikh grafov”, Mat. sb., 196:1 (2005), 123–156 | DOI | MR | Zbl

[7] Khinchin A. Ya., Izbrannye trudy po teorii chisel, MTsNMO, M., 2006 | MR

[8] Boshernitzan M. D., “Elementary proof of Fürstenberg's Diophantine result”, Proc. Amer. Math. Soc., 122 (1994), 67–70 | MR | Zbl

[9] Bourgain J., “A Szemeredi type theorem for sets of positive density in $\mathbb R^k$”, Israel J. Math., 54:3 (1986), 307–316 | DOI | MR | Zbl

[10] Dubickas A., “On the fractional parts of lacunary sequences”, Math. Scand., 99 (2006), 136–146 | MR | Zbl

[11] Dubickas A., On the Distribution of Powers of a Complex Number, Preprint, 2007 | MR

[12] Eggleston H. G., “Sets of fractional dimension which occur in some problems of number theory”, Proc. London Math. Soc., 54 (1951–1952), 42–93 | DOI | MR | Zbl

[13] Erdős P., Repartition modulo 1, Lect. Notes Math., 475, Springer, New York, 1975 | MR

[14] Fürstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1 (1967), 1–49 | DOI | MR | Zbl

[15] Fürstenberg H., Katznelson Y., Weiss B., “Ergodic theory and configurations in sets of positive density”, Mathematics of Ramsey Theory, Algorithms and Combinatorics, 5, Springer, Berlin, 1990, 184–198 | DOI | MR

[16] Katznelson Y., “Chromatic numbers of Cayley graphs on $\mathbb Z$ and recurrence”, Combinatorica, 21 (2001), 211–219 | DOI | MR | Zbl

[17] Khintchine A., “Über eine Klasse linearer Diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50 (1926), 170–195 | DOI | Zbl

[18] De Mathan B., “Numbers contravening a condition in density modulo 1”, Acta Math. Acad. Sci. Hungar., 36 (1980), 237–241 | DOI | MR | Zbl

[19] Moshchevitin N. G., A version of the proof for Peres–Schlag's theorem on lacunary sequences, 2007, arXiv: 0708.2087v2[math.NT]

[20] Moshchevitin N. G., Density modulo 1 of sublacunary sequences: application of Peres–Schlag's arguments, 2007, arXiv: 0709.3419v2[math.NT]

[21] Peres Y., Schlag W., Two Erdős problems on lacunary sequences: chromatic numbers and Diophantine approximations, 2007, arXiv: 0706.0223v1[math.CO] | MR

[22] Pollington A. D., “On the density of the sequence $\{n_k\xi\}$”, Illinois J. Math., 23:4 (1979), 511–515 | MR | Zbl

[23] Schmidt W. M., “On badly approximable numbers and certain games”, Trans. Amer. Math. Soc., 623 (1966), 178–199 | DOI | MR

[24] Schmidt W. M., Diophantine Approximations, Lect. Notes Math., 785, Springer, Berlin, 1980 | MR | Zbl

[25] Székely L. A., “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his Mathematics, Papers from the Conference Held in Budapest (July 4–11, 1999, Budapest, J. Bolyai Math. Soc.), Bolyai Soc. Math. Stud., 11, Springer, Berlin, 2002, 649–666 | MR | Zbl