On value-distribution of $L$-functions from the Selberg class
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 103-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, two limit theorems in the sense of the weak convergence of probability measures in the space of meromorphic functions and on the complex plane are proved for $L$-functions from a subclass of the Selberg class. The explicit form of the limit measures are given.
@article{FPM_2010_16_5_a8,
     author = {R. Macaitien\.{e}},
     title = {On value-distribution of $L$-functions from the {Selberg} class},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a8/}
}
TY  - JOUR
AU  - R. Macaitienė
TI  - On value-distribution of $L$-functions from the Selberg class
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 103
EP  - 116
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a8/
LA  - ru
ID  - FPM_2010_16_5_a8
ER  - 
%0 Journal Article
%A R. Macaitienė
%T On value-distribution of $L$-functions from the Selberg class
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 103-116
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a8/
%G ru
%F FPM_2010_16_5_a8
R. Macaitienė. On value-distribution of $L$-functions from the Selberg class. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 103-116. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a8/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1987

[2] Bohr H., Jessen B., “Über die Wertverteilung der Riemannschen Zetafunktion”, Acta Math., 54 (1930), 1–35 | DOI | MR | Zbl

[3] Bohr H., Jessen B., “Über die Wertverteilung der Riemannschen Zetafunktion, II”, Acta Math., 58 (1932), 1–55 | DOI | MR | Zbl

[4] Bombieri E., Hejhal D. A., “On the distribution of zeros of linear combinations of Euler products”, Duke Math. J., 80 (1995), 821–862 | DOI | MR | Zbl

[5] Bombieri E., Perelli A., “Distinct zeros of $L$-functions”, Acta Arith., 83 (1998), 271–281 | MR | Zbl

[6] Conrey J. B., Ghosh A., “On the Selberg class of Dirichlet series: small degrees”, Duke Math. J., 72 (1993), 673–693 | DOI | MR | Zbl

[7] Conrey J. B., Ghosh A., Remarks on the generalized Lindelöf hypothesis, Preprint http://www.math.obstate.edu/~conrey/papers.html | MR

[8] Cramér H., Leddbetter M. R., Stationary and Related Stochastic Processes, Wiley, New York, 1967 | Zbl

[9] Genys J., Laurinčikas A., “A joint limit theorem for general Dirichlet series”, Lithuanian Math. J., 44:1 (2004), 18–35 | DOI | MR | Zbl

[10] Heyer H., Probability Measures on Locally Compact Groups, Springer, Berlin, 1977 | MR | Zbl

[11] Joyner D., Distribution Theorems of $L$-Functions, Longman Scientific, Harlow, 1986 | MR | Zbl

[12] Kaczorowski J., Perelli A., “The Selberg class: a survey”, Number Theory in Progress, Proc. of the Int. Conf. in Honor of the 60th Birthday of A. Schinzel (Zakopane, 1997), v. 2, Elementary and Analytic Number Theory, De Gruyter, Berlin, 1999, 953–992 | MR | Zbl

[13] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996 | MR

[14] Laurinčikas A., “Application of probabilistic methods in the theory of the Riemann zeta-function. II: Topical problems”, Int. Conf. Modern Problems of Number Theory and Its Applications (Russia, Tula, 2001), Moscow State University, Moscow, 2002, 98–116 | MR | Zbl

[15] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer, Dordrecht, 2002 | MR | Zbl

[16] Laurinčikas A., Matsumoto K., “Joint value-distribution on Lerch zeta-functions”, Lithuanian Math. J., 38:3 (1998), 238–249 | DOI | MR | Zbl

[17] Macaitienė R., “Joint discrete limit theorems in the space of analytic functions for general Dirichlet series”, Lithuanian Math. J., 45:1 (2005), 84–93 | DOI | MR | Zbl

[18] Matsumoto K., “Probabilistic value-distribution theory of zeta-functions”, Sugaku Expositions, 17:1 (2004), 51–71 | MR | Zbl

[19] Molteni G., “A note on a result of Bochner and Conrey–Ghosh about the Selberg class”, Arch. Math., 72 (1999), 219–222 | DOI | MR | Zbl

[20] Perelli A., “General $L$-functions”, Ann. Mat. Pura Appl., 130 (1982), 287–306 | DOI | MR | Zbl

[21] Perelli A., “A survey of the Selberg class of $L$-functions, I”, Milan J. Math., 73 (2005), 19–52 | DOI | MR | Zbl

[22] Perelli A., “A survey of the Selberg class of $L$-functions, II”, Riv. Mat. Univ. Parma, 7:3 (2004), 83–118 | MR | Zbl

[23] Selberg A., “Old and new conjectures and results about a class of Dirichlet series”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), eds. E. Bombieri et al., Univ. Salerno, Salerno, 1992, 367–385 | MR | Zbl

[24] Steuding J., On the universality for functions in the Selberg class, Proc. of the Session in Analytic Number Theory and Diophantine Equations (Bonn, 2002), Bonner Math. Schriften, 360, eds. D. R. Heath-Brown, B. Z. Moroz, Bonn, 2003 | MR | Zbl

[25] Steuding J., Value-distribution of $L$-functions and allied zeta-functions – with an emphasis on aspects of universality Habilitationschrift, J. W. Goethe-Universität, Frankfurt, 2003