On inhomogeneous Diophantine approximation and Hausdorff dimension
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 93-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma=\mathbf ZA+\mathbf Z^n\subset\mathbf R^n$ be a dense subgroup of rank $n+1$ and let $\hat\omega(A)$ denote the exponent of uniform simultaneous rational approximation to the generating point $A$. For any real number $v\ge\hat\omega(A)$, the Hausdorff dimension of the set $\mathcal B_v$ of points in $\mathbf R^n$ that are $v$-approximable with respect to $\Gamma$ is shown to be equal to $1/v$.
@article{FPM_2010_16_5_a7,
     author = {M. Laurent},
     title = {On inhomogeneous {Diophantine} approximation and {Hausdorff} dimension},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a7/}
}
TY  - JOUR
AU  - M. Laurent
TI  - On inhomogeneous Diophantine approximation and Hausdorff dimension
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 93
EP  - 101
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a7/
LA  - ru
ID  - FPM_2010_16_5_a7
ER  - 
%0 Journal Article
%A M. Laurent
%T On inhomogeneous Diophantine approximation and Hausdorff dimension
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 93-101
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a7/
%G ru
%F FPM_2010_16_5_a7
M. Laurent. On inhomogeneous Diophantine approximation and Hausdorff dimension. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 93-101. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a7/

[1] Trubetskoi S., Shmeling I., “Neodnorodnye diofantovy priblizheniya i uglovaya vozvraschaemost dlya bilyardov v mnogougolnikakh”, Mat. sb., 194:2 (2003), 129–144 | DOI | MR | Zbl

[2] Bernik V. I., Dodson M. M., Metric Diophantine Approximation on Manifolds, Cambridge Tracts Math. Math. Phys., 137, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[3] Bugeaud Y., “A note on inhomogeneous Diophantine approximation”, Glasgow Math. J., 45 (2003), 105–110 | DOI | MR | Zbl

[4] Bugeaud Y., Approximation by Algebraic Numbers, Cambridge Tracts Math., 160, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[5] Bugeaud Y., Chevallier N., “On simultaneous inhomogeneous Diophantine approximation”, Acta Arith., 132 (2006), 97–123 | DOI | MR

[6] Bugeaud Y., Laurent M., “On exponents of homogeneous and inhomogeneous Diophantine approximation”, Moscow Math. J., 5:4 (2005), 747–766 | MR | Zbl

[7] Bugeaud Y., Laurent M., “Exponents of Diophantine approximation”, Diophantine Geometry, CRM Ser., 4, ed. U. Zannier, Scu. Norm. Sup. Pisa, 2007, 101–121 | MR

[8] Cassels J. W. S., An Introduction to Diophantine Approximation, Cambridge Tracts Math. Math. Phys., 99, Cambridge Univ. Press, Cambridge, 1957 | MR

[9] Chevallier N., “Meilleures approximations d'un élément du tore $\mathbf T^2$ et géométrie des multiples de cet élément”, Acta Arith., 78 (1996), 19–35 | MR | Zbl

[10] Falconer K., Fractal Geometry: Mathematical Foundations and Applications, Wiley, 1990 | MR | Zbl

[11] Khintchine A. Ya., “Über eine Klasse linearer diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50 (1926), 170–195 | DOI | Zbl