Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_5_a5, author = {K. Gy\H{o}ry and \'A. Pint\'er}, title = {Binomial {Thue} equations, ternary equations, and power values of polynomials}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {61--77}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/} }
TY - JOUR AU - K. Győry AU - Á. Pintér TI - Binomial Thue equations, ternary equations, and power values of polynomials JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 61 EP - 77 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/ LA - ru ID - FPM_2010_16_5_a5 ER -
K. Győry; Á. Pintér. Binomial Thue equations, ternary equations, and power values of polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 61-77. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/
[1] Bennett M. A., “Recipes for ternary diophantine equations of signature $(p,p,k)$”, Proc. RIMS Kokyuroku, 1319 (2003), 51–55
[2] Bennett M. A., “Products of consecutive integers”, Bull. London Math. Soc., 36 (2004), 683–694 | DOI | MR | Zbl
[3] Bennett M. A., Győry K., Mignotte M., Pintér Á., “Binomial Thue equations and polynomial powers”, Compositio Math., 142 (2006), 1103–1121 | DOI | MR | Zbl
[4] Bennett M. A., Vatsal V., Yazdani S., “Ternary Diophantine equations of signature $(p,p,3)$”, Compositio Math., 140 (2004), 1399–1416 | DOI | MR | Zbl
[5] Bugeaud Y., Győry K., “On binomial Thue–Mahler equations”, Period. Math. Hungar., 49 (2004), 25–34 | DOI | MR | Zbl
[6] Bugeaud Y., Mignotte M., Siksek S., “A multi-Frey approach to some multi-parameter families of Diophantine equations”, Can. J. Math., 60:3 (2008), 491–519 | DOI | MR | Zbl
[7] Darmon H., Merel L., “Winding quotient and some variants of Fermat's last theorem”, J. Reine Angew. Math., 490 (1997), 81–100 | MR | Zbl
[8] Evertse J. H., Győry K., Stewart C. L., Tijdeman R., “$S$-unit equations and their applications”, New Advances in Transcendence Theory, ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, 110–174 | DOI | MR
[9] Győry K., “Über die diophantische Gleichung $x^p+y^p=cz^p$”, Publ. Math. Debrecen, 13 (1966), 301–305 | MR
[10] Győry K., “On the number of solutions of linear equations in units of an algebraic number field”, Comment. Math. Helv., 54 (1979), 583–600 | DOI | MR
[11] Győry K., “Some recent applications of $S$-unit equations”, Astérisque, 209 (1992), 17–38 | MR
[12] Győry K., “Applications of unit equations”, Analytic Number Theory, Kyoto, 1996, 62–78 | MR
[13] Győry K., Yu K., “Bounds for the solutions of $S$-unit equations and decomposable form equations”, Acta Arith., 123 (2006), 9–41 | DOI | MR
[14] Győry K., Pink I., Pintér Á., “Power values of polynomials and binomial Thue–Mahler equations”, Publ. Math. Debrecen, 65 (2004), 341–362 | MR
[15] Győry K., Pintér Á., “On the resolution of equations $Ax^n-By^n=C$ in integers $x,y$ and $n\geq3$, I”, Publ. Math. Debrecen, 70 (2007), 483–501 | MR
[16] Halberstadt E., Kraus A., “Courbes de Fermat: résultats et problémes”, J. Reine Angew. Math., 548 (2002), 167–234 | DOI | MR | Zbl
[17] Kraus A., “Majorations effectives pour l'équation de Fermat généreliso”, Can. J. Math., 49 (1997), 1139–1161 | DOI | MR | Zbl
[18] Mignotte M., “A kit of linear forms of three logarithms”, Publ. Ins. Rech. Math. Av. (Strasbourg) (to appear)
[19] Ribet K., “On the equation $a^p+2^\alpha b^p+c^p=0$”, Acta Arith., 79 (1997), 7–16 | MR | Zbl
[20] Serre J. P., “Sur les représentations modulaires de degré $2$ de $\mathrm{Gal}(\overline{\mathbb Q}/\mathbb Q)$”, Duke Math. J., 54 (1987), 179–230 | DOI | MR | Zbl
[21] Shorey T. N., Tijdeman R., Exponential Diophantine Equations, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl
[22] Siksek S., “The modular approach to Diophantine equations”, Number Theory, v. II, Grad. Texts Math., 240, Analytic and Modern Tools, ed. Cohen H., Springer, Berlin, 2007, 1107–1138 | MR
[23] Sprindzuk V. G., Classical Diophantine Equations, Lect. Notes Math., 1559, Springer, Berlin, 1993 | MR
[24] Wiles A., “Modular elliptic curves and Fermat's last theorem”, Ann. Math., 141 (1995), 443–551 | DOI | MR | Zbl