Binomial Thue equations, ternary equations, and power values of polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 61-77
Voir la notice de l'article provenant de la source Math-Net.Ru
We explicitly solve the equation $Ax^n-By^n=\pm1$ and, along the way, we obtain new results for a collection of equations $Ax^n-By^n=z^m$ with $m\in\{3,n\}$, where $x,y,z,A,B$, and $n$ are unknown nonzero integers such that $n\geq3$, $AB=p^\alpha q^\beta$ with nonnegative integers $\alpha$ and $\beta$ and with primes $2\leq p$. The proofs require a combination of several powerful methods, including the modular approach, recent lower bounds for linear forms in logarithms, somewhat involved local considerations, and computational techniques for solving Thue equations of low degree.
@article{FPM_2010_16_5_a5,
author = {K. Gy\H{o}ry and \'A. Pint\'er},
title = {Binomial {Thue} equations, ternary equations, and power values of polynomials},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {61--77},
publisher = {mathdoc},
volume = {16},
number = {5},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/}
}
TY - JOUR AU - K. Győry AU - Á. Pintér TI - Binomial Thue equations, ternary equations, and power values of polynomials JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 61 EP - 77 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/ LA - ru ID - FPM_2010_16_5_a5 ER -
K. Győry; Á. Pintér. Binomial Thue equations, ternary equations, and power values of polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 61-77. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/