Binomial Thue equations, ternary equations, and power values of polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 61-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explicitly solve the equation $Ax^n-By^n=\pm1$ and, along the way, we obtain new results for a collection of equations $Ax^n-By^n=z^m$ with $m\in\{3,n\}$, where $x,y,z,A,B$, and $n$ are unknown nonzero integers such that $n\geq3$, $AB=p^\alpha q^\beta$ with nonnegative integers $\alpha$ and $\beta$ and with primes $2\leq p$. The proofs require a combination of several powerful methods, including the modular approach, recent lower bounds for linear forms in logarithms, somewhat involved local considerations, and computational techniques for solving Thue equations of low degree.
@article{FPM_2010_16_5_a5,
     author = {K. Gy\H{o}ry and \'A. Pint\'er},
     title = {Binomial {Thue} equations, ternary equations, and power values of polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {61--77},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/}
}
TY  - JOUR
AU  - K. Győry
AU  - Á. Pintér
TI  - Binomial Thue equations, ternary equations, and power values of polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 61
EP  - 77
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/
LA  - ru
ID  - FPM_2010_16_5_a5
ER  - 
%0 Journal Article
%A K. Győry
%A Á. Pintér
%T Binomial Thue equations, ternary equations, and power values of polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 61-77
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/
%G ru
%F FPM_2010_16_5_a5
K. Győry; Á. Pintér. Binomial Thue equations, ternary equations, and power values of polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 61-77. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a5/

[1] Bennett M. A., “Recipes for ternary diophantine equations of signature $(p,p,k)$”, Proc. RIMS Kokyuroku, 1319 (2003), 51–55

[2] Bennett M. A., “Products of consecutive integers”, Bull. London Math. Soc., 36 (2004), 683–694 | DOI | MR | Zbl

[3] Bennett M. A., Győry K., Mignotte M., Pintér Á., “Binomial Thue equations and polynomial powers”, Compositio Math., 142 (2006), 1103–1121 | DOI | MR | Zbl

[4] Bennett M. A., Vatsal V., Yazdani S., “Ternary Diophantine equations of signature $(p,p,3)$”, Compositio Math., 140 (2004), 1399–1416 | DOI | MR | Zbl

[5] Bugeaud Y., Győry K., “On binomial Thue–Mahler equations”, Period. Math. Hungar., 49 (2004), 25–34 | DOI | MR | Zbl

[6] Bugeaud Y., Mignotte M., Siksek S., “A multi-Frey approach to some multi-parameter families of Diophantine equations”, Can. J. Math., 60:3 (2008), 491–519 | DOI | MR | Zbl

[7] Darmon H., Merel L., “Winding quotient and some variants of Fermat's last theorem”, J. Reine Angew. Math., 490 (1997), 81–100 | MR | Zbl

[8] Evertse J. H., Győry K., Stewart C. L., Tijdeman R., “$S$-unit equations and their applications”, New Advances in Transcendence Theory, ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, 110–174 | DOI | MR

[9] Győry K., “Über die diophantische Gleichung $x^p+y^p=cz^p$”, Publ. Math. Debrecen, 13 (1966), 301–305 | MR

[10] Győry K., “On the number of solutions of linear equations in units of an algebraic number field”, Comment. Math. Helv., 54 (1979), 583–600 | DOI | MR

[11] Győry K., “Some recent applications of $S$-unit equations”, Astérisque, 209 (1992), 17–38 | MR

[12] Győry K., “Applications of unit equations”, Analytic Number Theory, Kyoto, 1996, 62–78 | MR

[13] Győry K., Yu K., “Bounds for the solutions of $S$-unit equations and decomposable form equations”, Acta Arith., 123 (2006), 9–41 | DOI | MR

[14] Győry K., Pink I., Pintér Á., “Power values of polynomials and binomial Thue–Mahler equations”, Publ. Math. Debrecen, 65 (2004), 341–362 | MR

[15] Győry K., Pintér Á., “On the resolution of equations $Ax^n-By^n=C$ in integers $x,y$ and $n\geq3$, I”, Publ. Math. Debrecen, 70 (2007), 483–501 | MR

[16] Halberstadt E., Kraus A., “Courbes de Fermat: résultats et problémes”, J. Reine Angew. Math., 548 (2002), 167–234 | DOI | MR | Zbl

[17] Kraus A., “Majorations effectives pour l'équation de Fermat généreliso”, Can. J. Math., 49 (1997), 1139–1161 | DOI | MR | Zbl

[18] Mignotte M., “A kit of linear forms of three logarithms”, Publ. Ins. Rech. Math. Av. (Strasbourg) (to appear)

[19] Ribet K., “On the equation $a^p+2^\alpha b^p+c^p=0$”, Acta Arith., 79 (1997), 7–16 | MR | Zbl

[20] Serre J. P., “Sur les représentations modulaires de degré $2$ de $\mathrm{Gal}(\overline{\mathbb Q}/\mathbb Q)$”, Duke Math. J., 54 (1987), 179–230 | DOI | MR | Zbl

[21] Shorey T. N., Tijdeman R., Exponential Diophantine Equations, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl

[22] Siksek S., “The modular approach to Diophantine equations”, Number Theory, v. II, Grad. Texts Math., 240, Analytic and Modern Tools, ed. Cohen H., Springer, Berlin, 2007, 1107–1138 | MR

[23] Sprindzuk V. G., Classical Diophantine Equations, Lect. Notes Math., 1559, Springer, Berlin, 1993 | MR

[24] Wiles A., “Modular elliptic curves and Fermat's last theorem”, Ann. Math., 141 (1995), 443–551 | DOI | MR | Zbl