On the equivalence of Beukers-type and Sorokin-type multiple integrals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 49-59
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that a triple Beukers-type integral, as defined by G. Rhin and C. Viola, can be transformed into a suitable triple Sorokin-type integral. I will discuss possible extensions to the $n$-dimensional case of a similar equivalence between suitably defined Beukers-type and Sorokin-type multiple integrals, with consequences on the arithmetical structure of such integrals as linear combinations of zeta-values with rational coefficients.
@article{FPM_2010_16_5_a4,
author = {C. Viola},
title = {On the equivalence of {Beukers-type} and {Sorokin-type} multiple integrals},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {49--59},
publisher = {mathdoc},
volume = {16},
number = {5},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a4/}
}
C. Viola. On the equivalence of Beukers-type and Sorokin-type multiple integrals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 49-59. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a4/