Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_5_a4, author = {C. Viola}, title = {On the equivalence of {Beukers-type} and {Sorokin-type} multiple integrals}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {49--59}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a4/} }
C. Viola. On the equivalence of Beukers-type and Sorokin-type multiple integrals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 49-59. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a4/
[1] Sorokin V. N., “Teorema Aperi”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1998, no. 3, 48–53 | MR | Zbl
[2] Cresson J., Fischler S., Rivoal T., “Séries hypergéométriques multiples et polyzêtas”, Bull. Soc. Math. France, 136:1 (2008), 97–145 | MR | Zbl
[3] Fischler S., “Groupes de Rhin–Viola et intégrales multiples”, J. Théor. Nombres Bordeaux, 15:2 (2003), 479–534 | DOI | MR | Zbl
[4] Nesterenko Yu. V., “Integral identities and constructions of approximations to zeta-values”, J. Théor. Nombres Bordeaux, 15 (2003), 535–550 | DOI | MR | Zbl
[5] Rhin G., Viola C., “The group structure for $\zeta(3)$”, Acta Arith., 97:3 (2001), 269–293 | DOI | MR | Zbl
[6] Rhin G., Viola C., “Multiple integrals and linear forms in zeta-values”, Funct. Approx., 37 (2007), 429–444 | DOI | MR | Zbl
[7] Viola C., “The arithmetic of Euler's integrals”, Riv. Mat. Univ. Parma (7), 3$^*$ (2004), 119–149 | MR | Zbl