Remarks on linear independence of $q$-harmonic series
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 31-39

Voir la notice de l'article provenant de la source Math-Net.Ru

For any rational integer $q$, $|q|>1$, the linear independence over $\mathbb Q$ of the numbers $1$, $\zeta_q(1)$, and $\zeta_{-q}(1)$ is proved; here $\zeta_q(1)=\sum_{n=1}^\infty\frac1{q^n-1}$ is so-called $q$-harmonic series or $q$-zeta-value at the point $1$. Besides this, a measure of linear independence of these numbers is established.
@article{FPM_2010_16_5_a2,
     author = {P. Bundschuh},
     title = {Remarks on linear independence of $q$-harmonic series},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/}
}
TY  - JOUR
AU  - P. Bundschuh
TI  - Remarks on linear independence of $q$-harmonic series
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 31
EP  - 39
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/
LA  - ru
ID  - FPM_2010_16_5_a2
ER  - 
%0 Journal Article
%A P. Bundschuh
%T Remarks on linear independence of $q$-harmonic series
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 31-39
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/
%G ru
%F FPM_2010_16_5_a2
P. Bundschuh. Remarks on linear independence of $q$-harmonic series. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 31-39. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/