Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_5_a2, author = {P. Bundschuh}, title = {Remarks on linear independence of $q$-harmonic series}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {31--39}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/} }
P. Bundschuh. Remarks on linear independence of $q$-harmonic series. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 31-39. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/
[1] Borwein P. B., “On the irrationality of $\sum(1/(q^n+r))$”, J. Number Theory, 37 (1991), 253–259 | DOI | MR | Zbl
[2] Borwein P. B., “On the irrationality of certain series”, Math. Proc. Cambridge Philos. Soc., 112 (1992), 141–146 | DOI | MR | Zbl
[3] Bundschuh P., “Linear independence of values of a certain Lambert series”, Results Math., 51:1–2 (2007), 29–42 | DOI | MR | Zbl
[4] Bundschuh P., Väänänen K., “Arithmetical investigations of a certain infinite product”, Compositio Math., 91 (1994), 175–199 | MR | Zbl
[5] Bundschuh P., Väänänen K., “Linear independence of $q$-analogues of certain classical constants”, Results Math., 47 (2005), 33–44 | DOI | MR | Zbl
[6] Bundschuh P., Väänänen K., “Linear independence of certain Lambert and allied series”, Acta Arith., 120 (2005), 197–209 | DOI | MR | Zbl
[7] Bundschuh P., Zudilin W., “Irrationality measures for certain $q$-mathematical constants”, Math. Scand., 101 (2007), 104–122 | MR | Zbl
[8] Erdős P., “On arithmetical properties of Lambert series”, J. Indian Math. Soc., 12 (1948), 63–66 | MR | Zbl
[9] Tachiya Y., “Irrationality of certain Lambert series”, Tokyo J. Math., 27 (2004), 75–85 | DOI | MR | Zbl
[10] Zudilin W., “Heine's basic transform and a permutation group for $q$-harmonic series”, Acta Arith., 111 (2004), 153–164 | DOI | MR | Zbl