Remarks on linear independence of $q$-harmonic series
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any rational integer $q$, $|q|>1$, the linear independence over $\mathbb Q$ of the numbers $1$, $\zeta_q(1)$, and $\zeta_{-q}(1)$ is proved; here $\zeta_q(1)=\sum_{n=1}^\infty\frac1{q^n-1}$ is so-called $q$-harmonic series or $q$-zeta-value at the point $1$. Besides this, a measure of linear independence of these numbers is established.
@article{FPM_2010_16_5_a2,
     author = {P. Bundschuh},
     title = {Remarks on linear independence of $q$-harmonic series},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/}
}
TY  - JOUR
AU  - P. Bundschuh
TI  - Remarks on linear independence of $q$-harmonic series
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 31
EP  - 39
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/
LA  - ru
ID  - FPM_2010_16_5_a2
ER  - 
%0 Journal Article
%A P. Bundschuh
%T Remarks on linear independence of $q$-harmonic series
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 31-39
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/
%G ru
%F FPM_2010_16_5_a2
P. Bundschuh. Remarks on linear independence of $q$-harmonic series. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 31-39. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a2/

[1] Borwein P. B., “On the irrationality of $\sum(1/(q^n+r))$”, J. Number Theory, 37 (1991), 253–259 | DOI | MR | Zbl

[2] Borwein P. B., “On the irrationality of certain series”, Math. Proc. Cambridge Philos. Soc., 112 (1992), 141–146 | DOI | MR | Zbl

[3] Bundschuh P., “Linear independence of values of a certain Lambert series”, Results Math., 51:1–2 (2007), 29–42 | DOI | MR | Zbl

[4] Bundschuh P., Väänänen K., “Arithmetical investigations of a certain infinite product”, Compositio Math., 91 (1994), 175–199 | MR | Zbl

[5] Bundschuh P., Väänänen K., “Linear independence of $q$-analogues of certain classical constants”, Results Math., 47 (2005), 33–44 | DOI | MR | Zbl

[6] Bundschuh P., Väänänen K., “Linear independence of certain Lambert and allied series”, Acta Arith., 120 (2005), 197–209 | DOI | MR | Zbl

[7] Bundschuh P., Zudilin W., “Irrationality measures for certain $q$-mathematical constants”, Math. Scand., 101 (2007), 104–122 | MR | Zbl

[8] Erdős P., “On arithmetical properties of Lambert series”, J. Indian Math. Soc., 12 (1948), 63–66 | MR | Zbl

[9] Tachiya Y., “Irrationality of certain Lambert series”, Tokyo J. Math., 27 (2004), 75–85 | DOI | MR | Zbl

[10] Zudilin W., “Heine's basic transform and a permutation group for $q$-harmonic series”, Acta Arith., 111 (2004), 153–164 | DOI | MR | Zbl