Algebraic relations for reciprocal sums of even terms in Fibonacci numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 173-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the algebraic independence and algebraic relations, first, for reciprocal sums of even terms in Fibonacci numbers $\sum^\infty_{n=1} F_{2n}^{-2s}$, and second, for sums of evenly even and unevenly even types $\sum^\infty_{n=1}F^{-2s}_{4n}$, $\sum^\infty_{n=1}F^{-2s}_{4n-2}$. The numbers $\sum^\infty_{n=1}F_{4n-2}^{-2}$, $\sum^\infty_{n=1}F_{4n-2}^{-4}$, and $\sum^\infty_{n=1}F_{4n-2}^{-6}$ are shown to be algebraically independent, and each sum $\sum^\infty_{n=1}F^{-2s}_{4n-2}$ ($s\ge4$) is written as an explicit rational function of these three numbers over $\mathbb Q$. Similar results are obtained for various series of even type, including the reciprocal sums of Lucas numbers $\sum^\infty_{n=1}L_{2n}^{-p}$, $\sum^\infty_{n=1}L^{-p}_{4n}$, and $\sum^\infty_{n=1}L^{-p}_{4n-2}$.
@article{FPM_2010_16_5_a12,
     author = {C. Elsner and Sh. Shimomura and I. Shiokawa},
     title = {Algebraic relations for reciprocal sums of even terms in {Fibonacci} numbers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {173--200},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a12/}
}
TY  - JOUR
AU  - C. Elsner
AU  - Sh. Shimomura
AU  - I. Shiokawa
TI  - Algebraic relations for reciprocal sums of even terms in Fibonacci numbers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 173
EP  - 200
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a12/
LA  - ru
ID  - FPM_2010_16_5_a12
ER  - 
%0 Journal Article
%A C. Elsner
%A Sh. Shimomura
%A I. Shiokawa
%T Algebraic relations for reciprocal sums of even terms in Fibonacci numbers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 173-200
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a12/
%G ru
%F FPM_2010_16_5_a12
C. Elsner; Sh. Shimomura; I. Shiokawa. Algebraic relations for reciprocal sums of even terms in Fibonacci numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 173-200. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a12/

[1] Nesterenko Yu. V., “Modulyarnye funktsii i voprosy transtsendentnosti”, Mat. sb., 187:9 (1996), 65–96 | DOI | MR | Zbl

[2] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Fizmatgiz, M., 1963

[3] Abramowitz M., Stegun I. A., Handbook of Mathematical Functions, Dover, New York, 1965

[4] Duverney D., Nishioka Keiji, Nishioka Kumiko, Shiokawa I., “Transcendence of Jacobi's theta series”, Proc. Japan Acad. Ser. A Math. Sci., 72 (1996), 202–203 | DOI | MR | Zbl

[5] Duverney D., Nishioka Keiji, Nishioka Kumiko, Shiokawa I., “Transcendence of Rogers–Ramanujan continued fraction and reciprocal sums of Fibonacci numbers”, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 140–142 | DOI | MR | Zbl

[6] Elsner C., Shimomura Sh., Shiokawa I., “Algebraic relations for reciprocal sums of Fibonacci numbers”, Acta Arith., 130:1 (2007), 37–60 | DOI | MR | Zbl

[7] Elsner C., Shimomura Sh., Shiokawa I., “Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers”, Ramanujan J., 17:3 (2008), 429–446 | DOI | MR | Zbl

[8] Hancock H., Theory of Elliptic Functions, Dover, New York, 1958

[9] Ramanujan S., “On certain arithmetical functions”, Trans. Cambridge Philos. Soc., 22 (1916), 159–184

[10] Zucker I. J., “The summation of series of hyperbolic functions”, SIAM J. Math. Anal., 10 (1979), 192–206 | DOI | MR | Zbl