Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_5_a11, author = {T. Rivoal}, title = {Linear forms in zeta values arising from certain {Sorokin-type} integrals}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {161--172}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a11/} }
T. Rivoal. Linear forms in zeta values arising from certain Sorokin-type integrals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 161-172. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a11/
[1] Vasilev D. V., “Approksimatsii nulya lineinymi formami ot znachenii dzeta-funktsii Rimana”, Dokl. Nats. akad. nauk Belarusi, 45:5 (2001), 36–40 | MR | Zbl
[2] Gutnik L. A., “Ob irratsionalnosti nekotorykh velichin, soderzhaschikh $\zeta(3)$”, Uspekhi mat. nauk, 34:3 (1979), 190 | MR | Zbl
[3] Zlobin S. A., “Integraly, predstavlyaemye v vide lineinykh form ot obobschënnykh polilogarifmov”, Mat. zametki, 71:5 (2002), 782–787 | DOI | MR | Zbl
[4] Zlobin S. A., “O nekotorykh integralnykh tozhdestvakh”, Uspekhi mat. nauk, 57:3 (2002), 153–154 | DOI | MR | Zbl
[5] Nesterenko Yu. V., “Nekotorye zamechaniya o $\zeta(3)$”, Mat. zametki, 59:6 (1996), 865–880 | DOI | MR | Zbl
[6] Sorokin V. N., “Teorema Aperi”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1998, no. 3, 48–53 | MR | Zbl
[7] Apéry R., “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61 (1979), 11–13 | MR | Zbl
[8] Ball K., Rivoal T., “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146:1 (2001), 193–207 | DOI | MR | Zbl
[9] Beukers F., “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | DOI | MR | Zbl
[10] Beukers F., “Padé-approximations in number theory”, Padé Approximation and Its Applications, Proc. Conference (Amsterdam, The Netherlands, October 29–31, 1980), Lect. Notes Math., 888, eds. M. G. de Bruin, H. van Rossum, Springer, Berlin, 1981, 90–99 | DOI | MR
[11] Cresson J., Fischler S., Rivoal T., “Phénomènes de symétrie dans des formes linéaires en polyzêtas”, J. Reine Angew. Math., 617 (2008), 109–151 | DOI | MR | Zbl
[12] Cresson J., Fischler S., Rivoal T., “Séries hypergéométriques multiples et polyzêtas”, Bull. Soc. Math. France, 136:1 (2008), 97–145 | MR | Zbl
[13] Cresson J., Fischler S., Rivoal T. http://www.math.u-psud.fr/~fischler/algo.html
[14] Fischler S., “Groupes de Rhin–Viola et intégrales multiples”, J. Théor. Nombres Bordeaux, 15:2 (2003), 479–534 | DOI | MR | Zbl
[15] Fischler S., “Multiple series connected to Hoffman's conjecture on multiple zeta values”, J. Algebra, 320 (2008), 1682–1703 | DOI | MR | Zbl
[16] Krattenthaler C., Rivoal T., “An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series”, Ramanujan J., 13:1–3 (2007), 203–219 | DOI | MR | Zbl
[17] Krattenthaler C., Rivoal T., Hypergéométrie et fonction zêta de Riemann, Mem. Amer. Math. Soc., 186, Amer. Math. Soc., 2007 | MR
[18] Nesterenko Yu. V., “Integral identities and constructions of approximations to zeta-values”, J. Théor. Nombres Bordeaux, 15 (2003), 535–550 | DOI | MR | Zbl
[19] Rhin G., Viola C., “On a permutation group related to $\zeta(2)$”, Acta Arith., 77 (1996), 23–56 | MR | Zbl
[20] Rhin G., Viola C., “The group structure for $zeta(3)$”, Acta Arith., 97:3 (2001), 269–293 | DOI | MR | Zbl
[21] Rhin G., Viola C., “Multiple integrals and linear forms in zeta-values”, Funct. Approx., 37 (2007), 429–444 | DOI | MR | Zbl
[22] Rivoal T., “La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs”, C. R. Acad. Sci. Paris. Sér. I. Math., 331:4 (2000), 267–270 | DOI | MR | Zbl
[23] Rivoal T., “Irrationalité d'au moins un des neuf nombres $\zeta(5),\zeta(7),\dots,\zeta(21)$”, Acta Arith., 103:2 (2002), 157–167 | DOI | MR | Zbl
[24] Rivoal T., “Valeurs aux entiers de la fonction zêta de Riemann”, Quadrature, 49 (2003), 35–41 http://www-fourier.ujf-grenoble.fr/~rivoal/articles/quaddefi.pdf
[25] Zudilin W., “Well-poised hypergeometric service for diophantine problems of zeta values”, J. Théor. Nombres Bordeaux, 15:2 (2003), 593–626 | DOI | MR | Zbl
[26] Zudilin W., “Arithmetic of linear forms involving odd zeta values”, J. Théor. Nombres Bordeaux, 16 (2004), 251–291 | DOI | MR | Zbl