Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_5_a10, author = {A. A. Panchishkin}, title = {On zeta functions and families of {Siegel} modular forms}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {139--160}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a10/} }
A. A. Panchishkin. On zeta functions and families of Siegel modular forms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 139-160. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a10/
[1] Andrianov A. N., “Gipoteza Shimury dlya zigelevoi modulyarnoi gruppy roda 3”, DAN SSSR, 177:4 (1967), 755–758 | MR | Zbl
[2] Andrianov A. N., “Teoremy ratsionalnosti dlya ryadov Gekke i dzeta-funktsii grupp $\mathrm{GL}_n$ i $\mathrm{Sp}_n$ nad lokalnymi polyami”, Izv. AN SSSR. Ser. mat., 33:3 (1969), 466–505 | MR | Zbl
[3] Andrianov A. N., “Sfericheskie funktsii dlya $\mathrm{GL}_n$ nad lokalnymi polyami i summirovanie ryadov Gekke”, Mat. sb., 83(125):3(11) (1970), 429–451 | MR | Zbl
[4] Andrianov A. N., “Eilerovy proizvedeniya, otvechayuschie modulyarnym formam Zigelya roda 2”, Uspekhi mat. nauk, 29:3(177) (1974), 43–110 | MR | Zbl
[5] Andrianov A. N., Zhuravlëv V. G., Modulyarnye formy i operatory Gekke, Nauka, M., 1990 | MR
[6] Evdokimov S. A., “Ryady Dirikhle, dzeta-funktsii Andrianova v teorii eilerovykh modulyarnykh form roda 3”, DAN SSSR, 277:1 (1984), 25–29 | MR | Zbl
[7] Andrianov A. N., Quadratic Forms and Hecke Operators, Springer, Berlin, 1987 | MR | Zbl
[8] Boecherer S., Heim B., “$L$-functions for $\mathrm{GSp}_2\times\mathrm{Gl}_2$ of mixed weights”, Math. Z., 235 (2000), 11–51 | DOI | MR | Zbl
[9] Böcherer S., Panchishkin A. A., “Admissible $p$-adic measures attached to triple products of elliptic cusp forms”, Doc. Math., 2006, Extra Volume Coates, 77–132 | MR
[10] Böcherer S., Schmidt C.-G., “$p$-adic measures attached to Siegel modular forms”, Ann. Inst. Fourier, 50:5 (2000), 1375–1443 | DOI | MR | Zbl
[11] Coates J., “On $p$-adic $L$-functions”, Sém. Bourbaki 1987–1988, Astérisque, 177–178, 1989, Exp. 701, 33–59 | MR | Zbl
[12] Coates J., Perrin-Riou B., “On $p$-adic $L$-functions attached to motives over $\mathbb Q$”, Algebraic Number Theory, Conference in honor of Iwasawa, Adv. Stud. Pure Math., 17, Academic Press, Boston, 1989, 23–54 | MR
[13] Coleman R., “$p$-adic Banach spaces and families of modular forms”, Invent. Math., 127:3 (1997), 417–479 | DOI | MR | Zbl
[14] Coleman R., Stevens G., Teitelbaum J., “Numerical experiments on families of $p$-adic modular forms”, Computational Perspectives in Number Theory, eds. D. A. Buell, J. T. Teitelbaum, Amer. Math. Soc., 1998, 143–158 | MR | Zbl
[15] Colmez P., “La conjecture de Birch et Swinnerton-Dyer $p$-adique”, Sém. Bourbaki 2002–2003, Astérisque, 294, 2004, Exp. 919, 251–319 | MR | Zbl
[16] Courtieu M., Panchishkin A. A., Non-Archimedean $L$-Functions and Arithmetical Siegel Modular Forms, Lect. Notes Math., 1471, Springer, Berlin, 2004 | MR | Zbl
[17] Deligne P., “Valeurs de fonctions $L$ et périodes d'intégrales”, Automorphic Forms, Representations and $L$-Functions, Proc. Symp. Pure Math. (Oregon State Univ., Corvallis, Oregon, 1977), Pt. II, Proc. Symp. Pure Math., 33, Amer. Math. Soc., Providence, 1979, 313–346 | DOI | MR
[18] Duke W., Imamoǧlu Ö., “Siegel modular forms of small weight”, Math. Ann., 310 (1998), 73–82 | DOI | MR | Zbl
[19] Faber C., van der Geer G., “Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, I”, C. R. Acad. Sci. Paris, 338:5 (2004), 381–384 ; “II”, 338:6, 467–470 | DOI | MR | Zbl | DOI | MR | Zbl
[20] Harris M., Li J.-Sh., Skinner Ch. M., $p$-adic $L$-functions for unitary Shimura varieties, Preprint, 2006 | MR
[21] Hecke E., “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwickelung, I”, Math. Ann., 114 (1937), 1–28 ; “II”, 316–351 ; Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1959, 644–707 | DOI | MR | Zbl | MR | Zbl | MR
[22] Ikeda T., “On the lifting of elliptic cusp forms to Siegel cusp forms of degree $2n$”, Ann. Math. (2), 154 (2001), 641–681 | DOI | MR | Zbl
[23] Ikeda T., “Pullback of the lifting of elliptic cusp forms and Miyawaki's Conjecture”, Duke Math. Journal, 131 (2006), 469–497 | DOI | MR | Zbl
[24] Jiang D., Degree 16 standard $L$-function of $\mathrm{GSp}(2)\times\mathrm{GSp}(2)$, Mem. Amer. Math. Soc., 588, Amer. Math. Soc., 1996 | MR | Zbl
[25] Kurokawa N., “Analyticity of Dirichlet series over prime powers Analytic Number Theory”, Proc. of the Japanese-French Symp. (Tokyo, Japan, October 10–13, 1988), Lect. Notes Math., 1434, eds. K. Nagasaka, E. Fouvry, Springer, Berlin, 1990, 168–177 | DOI | MR
[26] Maass H., “Indefinite quadratische Formen und Eulerprodukte”, Comm. Pure Appl. Math., 19 (1976), 689–699 | DOI | MR
[27] Manin Yu. I., Selected Papers of Yu. I. Manin, World Sci. Ser. 20th Cent. Math., 3, World Scientific, River Edge, 1996
[28] Manin Yu. I., Panchishkin A. A., Introduction to Modern Number Theory, Encycl. Math. Sci., 49, Springer, Berlin, 2005 | MR | Zbl
[29] Miyawaki I., “Numerical examples of Siegel cusp forms of degree 3 and their zeta-functions”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 46:2 (1992), 307–339 | MR | Zbl
[30] Murokawa K., “Relations between symmetric power $L$-functions and spinor $L$-functions attached to Ikeda lifts”, Kodai Math. J., 25 (2002), 61–71 | DOI | MR
[31] Panchishkin A., “Admissible non-Archimedean standard zeta functions of Siegel modular forms”, Proc. of the Joint AMS Summer Conf. on Motives (Seattle, July 20 – August 2 1991), v. 2, Amer. Math. Soc., Providence, 1994, 251–292 | MR | Zbl
[32] Panchishkin A., “Motives over totally real fields and $p$-adic $L$-functions”, Ann. Inst. Fourier, 44:4 (1994), 989–1023 | DOI | MR | Zbl
[33] Panchishkin A. A., “A new method of constructing $p$-adic $L$-functions associated with modular forms”, Moscow Math. J., 2:2 (2002), 313–328 | MR | Zbl
[34] Panchishkin A. A., “Two variable $p$-adic $L$-functions attached to eigenfamilies of positive slope”, Invent. Math., 154:3 (2003), 551–615 | DOI | MR | Zbl
[35] Panchishkin A. A., “$p$-adic Banach modules of arithmetical modular forms and triple products of Coleman's families”, Pure Appl. Math. Q., 4:4 (2008), 1133–1164 | DOI | MR | Zbl
[36] Panchishkin A. A., Boecherer S., “Triple products of Coleman's families and their periods”, Periods and related topics from automorphic forms, Proc. of the 8th Hakuba Conf. (September 25–October 1, 2005)
[37] Panchishkin A., Vankov K., On the numerator of the symplectic Hecke series of degree three, 2006, arXiv: 0604602[math.NT]
[38] Panchishkin A., Vankov K., Rankin's lemma of higher genus and explicit formulas for Hecke operators, 2006, arXiv: 0610417[math.NT] | MR
[39] Shimura G., “On modular correspondences for $\mathrm{Sp}(n,Z)$ and their congruence relations”, Proc. Nat. Acad. Sci. USA, 49 (1963), 824–828 | DOI | MR | Zbl
[40] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, Princeton, 1971 | MR | Zbl
[41] Shimura G., Arithmeticity in the Theory of Automorphic Forms, Math. Surveys Monographs, 82, Amer. Math. Soc., Providence, 2000 | MR | Zbl
[42] Tamagawa T., “On the $\zeta$-function of a division algebra”, Ann. Math., 77 (1963), 387–405 | DOI | MR | Zbl
[43] Tilouine J., Urban E., “Several variable $p$-adic families of Siegel–Hilbert cusp eigenforms and their Galois representations”, Ann. Sci. École Norm. Sup. Ser. 4, 32 (1999), 499–574 | MR | Zbl
[44] Vankov K., Explicit formulas for Hecke operators and Rankin's lemma in higher genus, 2006, arXiv: 0606492[math.NT]
[45] Vo S., “The spin $L$-function on the symplectic group $\mathrm{GSp}(6)$”, Israel J. Math., 101 (1997), 1–71 | DOI | MR
[46] Wiles A., “Modular elliptic curves and Fermat's last theorem”, Ann. Math. (2), 141:3 (1995), 443–455 | DOI | MR
[47] Yoshida H., “Siegel's modular forms and the arithmetic of quadratic forms”, Invent. Math., 60 (1980), 193–248 | DOI | MR | Zbl
[48] Yoshida H., “Motives and Siegel modular forms”, Amer. J. Math., 123 (2001), 1171–1197 | DOI | MR | Zbl