Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 19-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a general multiplicity estimate for linear forms in solutions of various types of functional equations, which extends the zero estimates used in some recent works on the Siegel–Shidlovsky theorem and its $q$-analogues. We also present a dual version of this estimate, as well as a new interpretation of Siegel's theorem itself in terms of periods of Deligne's irregular Hodge theory.
@article{FPM_2010_16_5_a1,
     author = {D. Bertrand},
     title = {Multiplicity and vanishing lemmas for differential and $q$-difference equations in the {Siegel--Shidlovsky} theory},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {19--30},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/}
}
TY  - JOUR
AU  - D. Bertrand
TI  - Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 19
EP  - 30
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/
LA  - ru
ID  - FPM_2010_16_5_a1
ER  - 
%0 Journal Article
%A D. Bertrand
%T Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 19-30
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/
%G ru
%F FPM_2010_16_5_a1
D. Bertrand. Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 19-30. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/