Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 19-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a general multiplicity estimate for linear forms in solutions of various types of functional equations, which extends the zero estimates used in some recent works on the Siegel–Shidlovsky theorem and its $q$-analogues. We also present a dual version of this estimate, as well as a new interpretation of Siegel's theorem itself in terms of periods of Deligne's irregular Hodge theory.
@article{FPM_2010_16_5_a1,
     author = {D. Bertrand},
     title = {Multiplicity and vanishing lemmas for differential and $q$-difference equations in the {Siegel--Shidlovsky} theory},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {19--30},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/}
}
TY  - JOUR
AU  - D. Bertrand
TI  - Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 19
EP  - 30
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/
LA  - ru
ID  - FPM_2010_16_5_a1
ER  - 
%0 Journal Article
%A D. Bertrand
%T Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 19-30
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/
%G ru
%F FPM_2010_16_5_a1
D. Bertrand. Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 19-30. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/

[1] Nesterenko Yu. V., Shidlovskii A. B., “O lineinoi nezavisimosti znachenii $E$-funktsii”, Mat. sb., 187:8 (1996), 93–108 | DOI | MR | Zbl

[2] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1989 | MR

[3] Amou M., Matala-aho T., Väänänen K., “On Siegel–Shidlovskii's theory for $q$-difference equations”, Acta Arith., 127:4 (2007), 309335 | DOI | MR

[4] Amou M., Väänänen K., “An analogue of Shidlovskii's lemma for certain $q$-difference equations”, Aequationes Math., 65 (2003), 93–101 | MR | Zbl

[5] André Y., “Séries Gevrey de type arithmétique, I”, Ann. Math., 151 (2000), 705–740 ; “II”, 741–756 | DOI | MR | Zbl | MR | Zbl

[6] Beukers F., “A refined version of the Siegel–Shidlovskii theorem”, Ann. Math., 163 (2006), 369–379 | DOI | MR | Zbl

[7] Bertrand D., “Le théorème de Siegel–Shidlovsky revisité”, S. Lang volume, Springer (to appear) | MR

[8] Bertrand D., “Multiplicity estimates for values of $q$-difference equations”, Diophantine Geometry, Proceedings, Publ. Scuola Normale Superior/CRM Ser., ed. U. Zannier, Normale, Pisa, 2007, 65–71 | MR | Zbl

[9] Chudnovsky G., “On applications of Diophantine approximations”, Proc. Nat. Acad. Sci. USA, 81 (1984), 7261–7265 | DOI | MR | Zbl

[10] Deligne P., “Théorie de Hodge irrégulière”, I (1984): P. Deligne, B. Malgrange, J.-P. Ramis, Singularités irregulières, Correspondance Et Documents, Soc. Math. France, 2007 | MR | Zbl

[11] Di Vizio L., “On the arithmetic theory of $q$-difference equations. The $q$-analogue of the Grothendieck–Katz's conjecture on $p$-curvatures”, Invent. Math., 150 (2002), 517–578 | DOI | MR | Zbl

[12] Fischler S., “Interpolation on algebraic groups”, Compositio Math., 141 (2005), 907–925 | DOI | MR | Zbl

[13] Sauloy J., “Galois theory of Fuchsian $q$-difference equations”, Ann. Sci. École Norm. Sup., 36 (2003), 925–968 | MR | Zbl

[14] Sert A., “Une version effective du théorème de Lindemann–Weierstrass par les déterminants d'interpolation”, J. Number Theory, 76 (1999), 94–119 | DOI | MR | Zbl