Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 19-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a general multiplicity estimate for linear forms in solutions of various types of functional equations, which extends the zero estimates used in some recent works on the Siegel–Shidlovsky theorem and its $q$-analogues. We also present a dual version of this estimate, as well as a new interpretation of Siegel's theorem itself in terms of periods of Deligne's irregular Hodge theory.
@article{FPM_2010_16_5_a1,
author = {D. Bertrand},
title = {Multiplicity and vanishing lemmas for differential and $q$-difference equations in the {Siegel--Shidlovsky} theory},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {19--30},
publisher = {mathdoc},
volume = {16},
number = {5},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/}
}
TY - JOUR AU - D. Bertrand TI - Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 19 EP - 30 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/ LA - ru ID - FPM_2010_16_5_a1 ER -
%0 Journal Article %A D. Bertrand %T Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory %J Fundamentalʹnaâ i prikladnaâ matematika %D 2010 %P 19-30 %V 16 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/ %G ru %F FPM_2010_16_5_a1
D. Bertrand. Multiplicity and vanishing lemmas for differential and $q$-difference equations in the Siegel--Shidlovsky theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 19-30. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a1/