@article{FPM_2010_16_3_a8,
author = {I. B. Kozhukhov and A. V. Reshetnikov},
title = {Algebras whose equivalence relations are congruences},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {161--192},
year = {2010},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a8/}
}
I. B. Kozhukhov; A. V. Reshetnikov. Algebras whose equivalence relations are congruences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 161-192. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a8/
[1] Artamonov V. A., “Universalnye algebry”, Obschaya algebra, v. 2, Nauka, Fizmatgiz, M., 1991, 295–367
[2] Boltnev A. A., “Teoretiko-mnozhestvennoe opisanie polugrupp nekotorykh mnogoobrazii”, Chebyshëvskii sb., 6:1 (2005), 56–63 | MR | Zbl
[3] Evseev A. E., “Polugruppy s katenarno assotsiativnymi podmnozhestvami”, Sovrem. algebra, 1999, no. 4, 57–59
[4] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972 | Zbl
[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR
[6] Shevrin L. N., “Polugruppy”, Obschaya algebra, v. 2, Nauka, Fizmatgiz, M., 1991, 11–19
[7] Shevrin L. N., “K teorii epigrupp, II”, Mat. sb., 185:9 (1994), 153–176 | MR | Zbl
[8] Hotzel E., “On finiteness conditions in semigroups”, J. Algebra, 60 (1979), 352–370 | DOI | MR | Zbl