Algebras whose equivalence relations are congruences
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 161-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that all the equivalence relations of a universal algebra $A$ are its congruences if and only if either $|A|\le2$ or every operation $f$ of the signature is a constant (i.e., $f(a_1,\dots,a_n)=c$ for some $c\in A$ and all the $a_1,\dots,a_n\in A$) or a projection (i.e., $f(a_1,\dots,a_n)=a_i$ for some $i$ and all the $a_1,\dots,a_n\in A$). All the equivalence relations of a groupoid $G$ are its right congruences if and only if either $|G|\le2$ or every element $a\in G$ is a right unit or a generalized right zero (i.e., $xa=ya$ for all $x,y\in G$). All the equivalence relations of a semigroup $S$ are right congruences if and only if either $|S|\le 2$ or $S$ can be represented as $S=A\cup B$, where $A$ is an inflation of a right zero semigroup, and $B$ is the empty set or a left zero semigroup, and $ab=a$, $ba=a^2$ for $a\in A$, $b\in B$. If $G$ is a groupoid of 4 or more elements and all the equivalence relations of it are right or left congruences, then either all the equivalence relations of the groupoid $G$ are left congruences, or all of them are right congruences. A similar assertion for semigroups is valid without the restriction on the number of elements.
@article{FPM_2010_16_3_a8,
     author = {I. B. Kozhukhov and A. V. Reshetnikov},
     title = {Algebras whose equivalence relations are congruences},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {161--192},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a8/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - A. V. Reshetnikov
TI  - Algebras whose equivalence relations are congruences
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 161
EP  - 192
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a8/
LA  - ru
ID  - FPM_2010_16_3_a8
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A A. V. Reshetnikov
%T Algebras whose equivalence relations are congruences
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 161-192
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a8/
%G ru
%F FPM_2010_16_3_a8
I. B. Kozhukhov; A. V. Reshetnikov. Algebras whose equivalence relations are congruences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 161-192. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a8/

[1] Artamonov V. A., “Universalnye algebry”, Obschaya algebra, v. 2, Nauka, Fizmatgiz, M., 1991, 295–367

[2] Boltnev A. A., “Teoretiko-mnozhestvennoe opisanie polugrupp nekotorykh mnogoobrazii”, Chebyshëvskii sb., 6:1 (2005), 56–63 | MR | Zbl

[3] Evseev A. E., “Polugruppy s katenarno assotsiativnymi podmnozhestvami”, Sovrem. algebra, 1999, no. 4, 57–59

[4] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972 | Zbl

[5] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[6] Shevrin L. N., “Polugruppy”, Obschaya algebra, v. 2, Nauka, Fizmatgiz, M., 1991, 11–19

[7] Shevrin L. N., “K teorii epigrupp, II”, Mat. sb., 185:9 (1994), 153–176 | MR | Zbl

[8] Hotzel E., “On finiteness conditions in semigroups”, J. Algebra, 60 (1979), 352–370 | DOI | MR | Zbl