Distributivity, binary relations, and standard bases
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 127-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the author's previous papers, the connection between generating syzygy modules by binary relations, the property of a commutative ring to be arithmetical (that is to have a distributive ideal lattice), and the use of the so-called S-polynomials in the standard basis theory were discussed. In this note, these connections are considered in a more general context. As an illustration of the usefulness of these considerations, a simple proof of some well-known fact from commutative algebra is given.
@article{FPM_2010_16_3_a5,
     author = {E. S. Golod},
     title = {Distributivity, binary relations, and standard bases},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/}
}
TY  - JOUR
AU  - E. S. Golod
TI  - Distributivity, binary relations, and standard bases
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 127
EP  - 134
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/
LA  - ru
ID  - FPM_2010_16_3_a5
ER  - 
%0 Journal Article
%A E. S. Golod
%T Distributivity, binary relations, and standard bases
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 127-134
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/
%G ru
%F FPM_2010_16_3_a5
E. S. Golod. Distributivity, binary relations, and standard bases. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 127-134. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/

[1] Golod E. S., “Arifmeticheskie koltsa, endomorfizmy i bazisy Grëbnera”, Uspekhi mat. nauk, 60:1 (2005), 167–168 | DOI | MR | Zbl

[2] Golod E. S., “O nekommutativnykh bazisakh Grëbnera nad koltsami”, Fundament. i prikl. mat., 10:4 (2004), 91–96 | MR | Zbl

[3] Golod E. S., “Standard bases and homology”, Algebra: Some Current Trends, Proc. of the 5th Nacional School in Algebra (Varna, Bulgaria, 24 sept.–4 oct., 1986), Lect. Notes Math., 1352, eds. L. L. Avramov, K. B. Tchakerian, Springer, 1988, 88–95 | DOI | MR

[4] Huneke C., “On the symmetric and Rees algebra of an ideal generated by a d-sequence”, J. Algebra, 62:2 (1980), 268–275 | DOI | MR | Zbl