Distributivity, binary relations, and standard bases
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 127-134
In the author's previous papers, the connection between generating syzygy modules by binary relations, the property of a commutative ring to be arithmetical (that is to have a distributive ideal lattice), and the use of the so-called S-polynomials in the standard basis theory were discussed. In this note, these connections are considered in a more general context. As an illustration of the usefulness of these considerations, a simple proof of some well-known fact from commutative algebra is given.
@article{FPM_2010_16_3_a5,
author = {E. S. Golod},
title = {Distributivity, binary relations, and standard bases},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {127--134},
year = {2010},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/}
}
E. S. Golod. Distributivity, binary relations, and standard bases. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 127-134. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/
[1] Golod E. S., “Arifmeticheskie koltsa, endomorfizmy i bazisy Grëbnera”, Uspekhi mat. nauk, 60:1 (2005), 167–168 | DOI | MR | Zbl
[2] Golod E. S., “O nekommutativnykh bazisakh Grëbnera nad koltsami”, Fundament. i prikl. mat., 10:4 (2004), 91–96 | MR | Zbl
[3] Golod E. S., “Standard bases and homology”, Algebra: Some Current Trends, Proc. of the 5th Nacional School in Algebra (Varna, Bulgaria, 24 sept.–4 oct., 1986), Lect. Notes Math., 1352, eds. L. L. Avramov, K. B. Tchakerian, Springer, 1988, 88–95 | DOI | MR
[4] Huneke C., “On the symmetric and Rees algebra of an ideal generated by a d-sequence”, J. Algebra, 62:2 (1980), 268–275 | DOI | MR | Zbl