Distributivity, binary relations, and standard bases
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 127-134

Voir la notice de l'article provenant de la source Math-Net.Ru

In the author's previous papers, the connection between generating syzygy modules by binary relations, the property of a commutative ring to be arithmetical (that is to have a distributive ideal lattice), and the use of the so-called S-polynomials in the standard basis theory were discussed. In this note, these connections are considered in a more general context. As an illustration of the usefulness of these considerations, a simple proof of some well-known fact from commutative algebra is given.
@article{FPM_2010_16_3_a5,
     author = {E. S. Golod},
     title = {Distributivity, binary relations, and standard bases},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/}
}
TY  - JOUR
AU  - E. S. Golod
TI  - Distributivity, binary relations, and standard bases
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 127
EP  - 134
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/
LA  - ru
ID  - FPM_2010_16_3_a5
ER  - 
%0 Journal Article
%A E. S. Golod
%T Distributivity, binary relations, and standard bases
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 127-134
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/
%G ru
%F FPM_2010_16_3_a5
E. S. Golod. Distributivity, binary relations, and standard bases. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 127-134. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a5/