Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 63-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, lattice isomorphisms of semirings $C^+(X)$ of continuous nonnegative functions over an arbitrary topological space $X$ are characterized. It is proved that any isomorphism of lattices of all subalgebras with a unit of semirings $C^+(X)$ and $C^+(Y)$ is induced by a unique isomorphism of semirings. The same result is also correct for lattices of all subalgebras excepting the case of two-point Tychonovization of spaces.
@article{FPM_2010_16_3_a2,
     author = {E. M. Vechtomov and V. V. Sidorov},
     title = {Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {63--103},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a2/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - V. V. Sidorov
TI  - Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 63
EP  - 103
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a2/
LA  - ru
ID  - FPM_2010_16_3_a2
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A V. V. Sidorov
%T Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 63-103
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a2/
%G ru
%F FPM_2010_16_3_a2
E. M. Vechtomov; V. V. Sidorov. Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 63-103. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a2/

[1] Varankina V. I., Vechtomov E. M., Semënova I. A., “Polukoltsa nepreryvnykh neotritsatelnykh funktsii: delimost, idealy, kongruentsii”, Fundament. i prikl. mat., 4:2 (1998), 493–510 | MR | Zbl

[2] Vechtomov E. M., “Voprosy opredelyaemosti topologicheskikh prostranstv algebraicheskimi sistemami nepreryvnykh funktsii”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 28, 1990, 3–46 | MR | Zbl

[3] Vechtomov E. M., “Reshëtka podalgebr kolets nepreryvnykh funktsii i khyuittovskie prostranstva”, Mat. zametki, 62:5 (1997), 687–693 | DOI | MR | Zbl

[4] Vechtomov E. M., “Polukoltsa nepreryvnykh otobrazhenii”, Vestnik VyatGGU, 2004, no. 10, 57–64

[5] Vechtomov E. M., Sidorov V. V., “O reshëtochnom izomorfizme polukolets nepreryvnykh funktsii”, Tezisy dokladov Mezhdunar. algebraich. konf., Mat. in-t im. S. L. Soboleva, NGU, Novosibirsk, 2009, 113

[6] Gelfand I. M., Kolmogorov A. N., “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, DAN SSSR, 22:1 (1939), 11–15 | Zbl

[7] Grettser G., Obschaya teoriya reshëtok, Mir, M., 1982 | MR

[8] Kostrikin A. I., Vvedenie v algebru, Fizmatlit, M., 2000

[9] Sidorov V. V., “O stroenii reshëtochnykh izomorfizmov polukolets nepreryvnykh funktsii”, Tr. Mat. tsentra im. N. I. Lobachevskogo, 39, 2009, 339–341

[10] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[11] Artamonova I. I., Chermnykh V. V., Mikhalev A. V., Varankina V. I., Vechtomov E. M., “Semirings: sheaves and continuous functions”, Semigroups with Applications, Including Semigroup Rings, St. Petersburg, 1999, 23–58 | Zbl

[12] Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York, 1976 | MR | Zbl

[13] Golan J. F., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR

[14] Hewitt E., “Rings of real-valued continuous functions”, Trans. Amer. Math. Soc., 64:1 (1948), 45–99 | DOI | MR | Zbl

[15] Marovt J., “Multiplicative bijections of $C(X,I)$”, Proc. Amer. Math. Soc., 134:4 (2005), 1065–1075 | DOI | MR

[16] Stone M., “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc., 41:3 (1937), 375–481 | DOI | MR | Zbl