Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_3_a2, author = {E. M. Vechtomov and V. V. Sidorov}, title = {Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {63--103}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a2/} }
TY - JOUR AU - E. M. Vechtomov AU - V. V. Sidorov TI - Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 63 EP - 103 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a2/ LA - ru ID - FPM_2010_16_3_a2 ER -
%0 Journal Article %A E. M. Vechtomov %A V. V. Sidorov %T Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions %J Fundamentalʹnaâ i prikladnaâ matematika %D 2010 %P 63-103 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a2/ %G ru %F FPM_2010_16_3_a2
E. M. Vechtomov; V. V. Sidorov. Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 63-103. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a2/
[1] Varankina V. I., Vechtomov E. M., Semënova I. A., “Polukoltsa nepreryvnykh neotritsatelnykh funktsii: delimost, idealy, kongruentsii”, Fundament. i prikl. mat., 4:2 (1998), 493–510 | MR | Zbl
[2] Vechtomov E. M., “Voprosy opredelyaemosti topologicheskikh prostranstv algebraicheskimi sistemami nepreryvnykh funktsii”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 28, 1990, 3–46 | MR | Zbl
[3] Vechtomov E. M., “Reshëtka podalgebr kolets nepreryvnykh funktsii i khyuittovskie prostranstva”, Mat. zametki, 62:5 (1997), 687–693 | DOI | MR | Zbl
[4] Vechtomov E. M., “Polukoltsa nepreryvnykh otobrazhenii”, Vestnik VyatGGU, 2004, no. 10, 57–64
[5] Vechtomov E. M., Sidorov V. V., “O reshëtochnom izomorfizme polukolets nepreryvnykh funktsii”, Tezisy dokladov Mezhdunar. algebraich. konf., Mat. in-t im. S. L. Soboleva, NGU, Novosibirsk, 2009, 113
[6] Gelfand I. M., Kolmogorov A. N., “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, DAN SSSR, 22:1 (1939), 11–15 | Zbl
[7] Grettser G., Obschaya teoriya reshëtok, Mir, M., 1982 | MR
[8] Kostrikin A. I., Vvedenie v algebru, Fizmatlit, M., 2000
[9] Sidorov V. V., “O stroenii reshëtochnykh izomorfizmov polukolets nepreryvnykh funktsii”, Tr. Mat. tsentra im. N. I. Lobachevskogo, 39, 2009, 339–341
[10] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[11] Artamonova I. I., Chermnykh V. V., Mikhalev A. V., Varankina V. I., Vechtomov E. M., “Semirings: sheaves and continuous functions”, Semigroups with Applications, Including Semigroup Rings, St. Petersburg, 1999, 23–58 | Zbl
[12] Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York, 1976 | MR | Zbl
[13] Golan J. F., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR
[14] Hewitt E., “Rings of real-valued continuous functions”, Trans. Amer. Math. Soc., 64:1 (1948), 45–99 | DOI | MR | Zbl
[15] Marovt J., “Multiplicative bijections of $C(X,I)$”, Proc. Amer. Math. Soc., 134:4 (2005), 1065–1075 | DOI | MR
[16] Stone M., “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc., 41:3 (1937), 375–481 | DOI | MR | Zbl