Completely integrally closed modules and rings.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 237-243

Voir la notice de l'article provenant de la source Math-Net.Ru

A right or left uniserial domain $A$ is a completely integrally closed right $A$-module if and only if $A$ is an invariant uniserial domain with at most two prime ideals.
@article{FPM_2010_16_3_a12,
     author = {A. A. Tuganbaev},
     title = {Completely integrally closed modules and {rings.~II}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--243},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Completely integrally closed modules and rings.~II
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 237
EP  - 243
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/
LA  - ru
ID  - FPM_2010_16_3_a12
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Completely integrally closed modules and rings.~II
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 237-243
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/
%G ru
%F FPM_2010_16_3_a12
A. A. Tuganbaev. Completely integrally closed modules and rings.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 237-243. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/