Completely integrally closed modules and rings.~II
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 237-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

A right or left uniserial domain $A$ is a completely integrally closed right $A$-module if and only if $A$ is an invariant uniserial domain with at most two prime ideals.
@article{FPM_2010_16_3_a12,
     author = {A. A. Tuganbaev},
     title = {Completely integrally closed modules and {rings.~II}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--243},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Completely integrally closed modules and rings.~II
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 237
EP  - 243
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/
LA  - ru
ID  - FPM_2010_16_3_a12
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Completely integrally closed modules and rings.~II
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 237-243
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/
%G ru
%F FPM_2010_16_3_a12
A. A. Tuganbaev. Completely integrally closed modules and rings.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 237-243. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/

[1] Tuganbaev A. A., “Vpolne tselozamknutye moduli i koltsa”, Fundament. i prikl. mat., 15:8 (2009), 213–228 | MR

[2] Feis K., Algebra: koltsa, moduli i kategorii, v. 1, Mir, M., 1977

[3] Goel V. K., Jain S. K., “$\pi$-injective modules and rings whose cyclics are $\pi$-injective”, Commun. Algebra, 6:1 (1978), 59–73 | DOI | MR | Zbl

[4] Jeremy L., “Modules et anneaux quasi-continus”, Can. Math. Bull., 17:2 (1974), 217–228 | DOI | MR | Zbl

[5] Koehler A., “Rings with quasi-injective cyclic modules”, Quart. J. Math. Oxford Ser. 2, 25 (1974), 51–55 | DOI | MR | Zbl

[6] Osofsky B. L., “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | DOI | MR | Zbl