Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_3_a12, author = {A. A. Tuganbaev}, title = {Completely integrally closed modules and {rings.~II}}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {237--243}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/} }
A. A. Tuganbaev. Completely integrally closed modules and rings.~II. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 237-243. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a12/
[1] Tuganbaev A. A., “Vpolne tselozamknutye moduli i koltsa”, Fundament. i prikl. mat., 15:8 (2009), 213–228 | MR
[2] Feis K., Algebra: koltsa, moduli i kategorii, v. 1, Mir, M., 1977
[3] Goel V. K., Jain S. K., “$\pi$-injective modules and rings whose cyclics are $\pi$-injective”, Commun. Algebra, 6:1 (1978), 59–73 | DOI | MR | Zbl
[4] Jeremy L., “Modules et anneaux quasi-continus”, Can. Math. Bull., 17:2 (1974), 217–228 | DOI | MR | Zbl
[5] Koehler A., “Rings with quasi-injective cyclic modules”, Quart. J. Math. Oxford Ser. 2, 25 (1974), 51–55 | DOI | MR | Zbl
[6] Osofsky B. L., “Rings all of whose finitely generated modules are injective”, Pacific J. Math., 14 (1964), 645–650 | DOI | MR | Zbl