Recursive expansions with respect to a~chain of subspaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 205-226

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, recursive expansions in Hilbert space $H=L_2[0,1]$ are considered. We discuss a related notion of frames in finite-dimensional spaces. We also suggest a constructive approach to extend an arbitrary basis to obtain a tight frame. The algorithm of extending is applied to bases of a special form, whose Gram matrix is circulant. A construction of a chain of nested subspaces $\{V^n\}_{n=1}^\infty$ is given, and in its foundation lies an example of a function that can be expressed as a linear combination of its contractions and translations. The main result of the paper is the theorem that provides the uniform convergence of recursive Fourier series with respect to the chain $\{V^n\}_{n=1}^\infty$ for continuous functions.
@article{FPM_2010_16_3_a10,
     author = {A. V. Slovesnov},
     title = {Recursive expansions with respect to a~chain of subspaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--226},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a10/}
}
TY  - JOUR
AU  - A. V. Slovesnov
TI  - Recursive expansions with respect to a~chain of subspaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 205
EP  - 226
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a10/
LA  - ru
ID  - FPM_2010_16_3_a10
ER  - 
%0 Journal Article
%A A. V. Slovesnov
%T Recursive expansions with respect to a~chain of subspaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 205-226
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a10/
%G ru
%F FPM_2010_16_3_a10
A. V. Slovesnov. Recursive expansions with respect to a~chain of subspaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 205-226. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a10/