Recursive expansions with respect to a~chain of subspaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 205-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, recursive expansions in Hilbert space $H=L_2[0,1]$ are considered. We discuss a related notion of frames in finite-dimensional spaces. We also suggest a constructive approach to extend an arbitrary basis to obtain a tight frame. The algorithm of extending is applied to bases of a special form, whose Gram matrix is circulant. A construction of a chain of nested subspaces $\{V^n\}_{n=1}^\infty$ is given, and in its foundation lies an example of a function that can be expressed as a linear combination of its contractions and translations. The main result of the paper is the theorem that provides the uniform convergence of recursive Fourier series with respect to the chain $\{V^n\}_{n=1}^\infty$ for continuous functions.
@article{FPM_2010_16_3_a10,
     author = {A. V. Slovesnov},
     title = {Recursive expansions with respect to a~chain of subspaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--226},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a10/}
}
TY  - JOUR
AU  - A. V. Slovesnov
TI  - Recursive expansions with respect to a~chain of subspaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 205
EP  - 226
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a10/
LA  - ru
ID  - FPM_2010_16_3_a10
ER  - 
%0 Journal Article
%A A. V. Slovesnov
%T Recursive expansions with respect to a~chain of subspaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 205-226
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a10/
%G ru
%F FPM_2010_16_3_a10
A. V. Slovesnov. Recursive expansions with respect to a~chain of subspaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 205-226. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a10/

[1] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR | Zbl

[2] Galatenko V. V., “Ob ortorekursivnom razlozhenii po nekotoroi sisteme funktsii”, Izv. RAN. Ser. mat., 66:1 (2002), 59–70 | DOI | MR | Zbl

[3] Galatenko V. V., “Ob ortorekursivnom razlozhenii po nekotoroi sisteme funktsii s oshibkami pri vychislenii koeffitsientov”, Mat. sb., 195:7 (2004), 21–36 | DOI | MR | Zbl

[4] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001

[5] Drabkova E. S., Novikov S. Ya., “Ob'ëm freima Parsevalya”, Vestn. SamGU. Estestvennonauch. ser., 2007, no. 9/1(59), 91–106 | MR

[6] Istomina M. N., Pevnyi A. B., “O raspolozhenii tochek na sfere i freime Mersedes-Bents”, Mat. prosveschenie. Ser. 1, 2007, no. 11, 105–112

[7] Kashin B. S., Kulikova T. Yu., “Zamechanie ob opisanii freimov obschego vida”, Mat. zametki, 72:6 (2002), 941–945 | DOI | MR | Zbl

[8] Lukashenko T. P., “O svoistvakh ortorekursivnykh razlozhenii po neortogonalnym sistemam”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2001, no. 1, 6–10 | MR | Zbl

[9] Lukashenko T. P., Sadovnichii V. A., “O rekursivnykh razlozheniyakh po tsepochke sistem”, Dokl. RAN, 425:6 (2009), 741–746 | MR | Zbl

[10] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005

[11] Naimark M. A., “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR, 4:3 (1940), 277–318 | MR | Zbl

[12] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[13] Osvald P., “O norme v $C$ ortoproektorov na podprostranstva lomanykh”, Mat. zametki, 21:4 (1977), 495–502 | MR | Zbl

[14] Stechkin B. S., Stechkin S. B., “Srednee kvadraticheskoe i srednee arifmeticheskoe”, DAN SSSR, 137:2 (1961), 287–290 | Zbl

[15] Christensen O., Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2002 | MR

[16] Duffin R. J., Schaeffer A. C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI | MR | Zbl

[17] Goyal V. K., Kovacevich J., Kelner J. A., “Quantized frame expansions with erasures”, Appl. Comput. Harmon. Anal., 10:3 (2001), 203–233 | DOI | MR | Zbl

[18] Temlyakov V. N., “Weak greedy algorithms”, Adv. Comp. Math., 12:2–3 (2000), 193–208 | MR