Global dimension of Noetherian serial rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 41-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The global dimension of Noetherian serial rings is studied. It is proved that if an indecomposable serial ring has infinite global dimension then it is Artinian and its quiver is a simple cycle. Using methods of the theory of right serial quivers, we give an upper estimate on the Loewy length of Artinian rings of finite global dimension. Applications to the calculation of the global dimension of tiled orders of width 2 are given.
@article{FPM_2010_16_3_a1,
     author = {N. A. Bronickaya and V. V. Kirichenko},
     title = {Global dimension of {Noetherian} serial rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {41--62},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a1/}
}
TY  - JOUR
AU  - N. A. Bronickaya
AU  - V. V. Kirichenko
TI  - Global dimension of Noetherian serial rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 41
EP  - 62
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a1/
LA  - ru
ID  - FPM_2010_16_3_a1
ER  - 
%0 Journal Article
%A N. A. Bronickaya
%A V. V. Kirichenko
%T Global dimension of Noetherian serial rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 41-62
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a1/
%G ru
%F FPM_2010_16_3_a1
N. A. Bronickaya; V. V. Kirichenko. Global dimension of Noetherian serial rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 41-62. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a1/

[1] Arnold V. I., Eksperimentalnoe nablyudenie matematicheskikh faktov, MTsNMO, M., 2006 | MR

[2] Gubareni N. M., Drozd Yu. A., Kirichenko V. V., Pravoryadnye koltsa, Preprint No 110, Institut elektrodinamiki, Akademiya nauk Ukrainy, Kiev, 1976

[3] Drozd Yu. A., Kirichenko V. V., Konechnomernye algebry, Vischa shkola, Kiev, 1980 | MR | Zbl

[4] Zavadskii A. G., “Stroenie poryadkov, nad kotorymi vse predstavleniya vpolne razlozhimy”, Mat. zametki, 13:2 (1973), 325–335 | MR | Zbl

[5] Zavadskii A. G., Kirichenko V. V., “Moduli bez krucheniya nad pervichnymi koltsami”, Zap. nauch. sem. LOMI AN SSSR, 57, 1976, 100–116 | MR | Zbl

[6] Skornyakov L. A., “Kogda vse moduli polutsepnye?”, Mat. zametki, 5:2 (1969), 173–182 | MR | Zbl

[7] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, M., 1979 | MR

[8] Auslander M., “On the dimension of modules and algebras. III. Global dimension”, Nagoya Math. J., 9 (1955), 67–77 | MR | Zbl

[9] Burgess W. D., Fuller K. R., Voss E. R., Zimmermann-Huisgen B., “The Cartan matrix as an indicator of finite global dimension for Artinian rings”, Proc. Amer. Math. Soc., 95 (1985), 157–165 | DOI | MR | Zbl

[10] Eizenbud D., Griffith P., “The structure of serial rings”, Pacific J. Math., 36 (1971), 109–121 | DOI | MR

[11] Fujita H., “Tiled orders of finite global dimension”, Trans. Amer. Math. Soc., 322 (1990), 329–342 | DOI | MR | Zbl

[12] Fujita H., “Erratum to ‘Tiled orders of finite global dimension’ ”, Trans. Amer. Math. Soc., 327:2 (1991), 919–920 | DOI | MR | Zbl

[13] Goldie A. W., “Torsionfree modules and rings”, J. Algebra, 1 (1964), 268–287 | DOI | MR | Zbl

[14] Gustafson W. H., “Global dimension in serial rings”, J. Algebra, 97 (1985), 14–16 | DOI | MR | Zbl

[15] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, Rings and Modules, v. 1, Kluwer Academic, Dordrecht, 2004 | MR | Zbl

[16] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, Rings and Modules, v. 2, Math. Its Appl., 586, Springer, Dordrecht, 2007 | DOI | MR | Zbl

[17] Jategaonkar V. A., “Global dimension of tiled orders over a discrete valuation ring”, Trans. Amer. Math. Soc., 196 (1974), 313–330 | DOI | MR | Zbl

[18] Kirkman E., Kuzmanovich J., “Global dimensions of a class of tiled order”, J. Algebra, 127 (1989), 57–92 | DOI | MR

[19] Kupisch H., “Beiträge zur Theorie nichthlbeinfacher Ringe mit Minimalbedingung”, Crelles J., 201 (1959), 100–112 | DOI | MR | Zbl

[20] Nakayama T., “On Frobeniusean algebras, I”, Ann. Math. (2), 40 (1939), 611–633 | DOI | MR | Zbl

[21] Nakayama T., “Note on uniserial and generalized uniserial rings”, Proc. Imp. Acad. Tokyo, 16 (1940), 285–289 | DOI | MR | Zbl

[22] Nakayama T., “On Frobeniusean algebras, II”, Ann. Math. (2), 42 (1941), 1–21 | DOI | MR | Zbl

[23] Puninski G., Serial Rings, Kluwer Academic, Dordrecht, 2001 | MR | Zbl

[24] Rump W., “Discrete posets, cell complexes, and the global dimension of tiled orders”, Commun. Algebra, 24:1 (1996), 55–107 | DOI | MR | Zbl

[25] Simson D., Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Appl., 4, Gordon and Breach, Amsterdam, 1992 | MR | Zbl

[26] Tarsy R. B., “Global dimension of orders”, Trans. Amer. Math. Soc., 151 (1970), 335–340 | DOI | MR | Zbl