Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_3_a1, author = {N. A. Bronickaya and V. V. Kirichenko}, title = {Global dimension of {Noetherian} serial rings}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {41--62}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a1/} }
N. A. Bronickaya; V. V. Kirichenko. Global dimension of Noetherian serial rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 41-62. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a1/
[1] Arnold V. I., Eksperimentalnoe nablyudenie matematicheskikh faktov, MTsNMO, M., 2006 | MR
[2] Gubareni N. M., Drozd Yu. A., Kirichenko V. V., Pravoryadnye koltsa, Preprint No 110, Institut elektrodinamiki, Akademiya nauk Ukrainy, Kiev, 1976
[3] Drozd Yu. A., Kirichenko V. V., Konechnomernye algebry, Vischa shkola, Kiev, 1980 | MR | Zbl
[4] Zavadskii A. G., “Stroenie poryadkov, nad kotorymi vse predstavleniya vpolne razlozhimy”, Mat. zametki, 13:2 (1973), 325–335 | MR | Zbl
[5] Zavadskii A. G., Kirichenko V. V., “Moduli bez krucheniya nad pervichnymi koltsami”, Zap. nauch. sem. LOMI AN SSSR, 57, 1976, 100–116 | MR | Zbl
[6] Skornyakov L. A., “Kogda vse moduli polutsepnye?”, Mat. zametki, 5:2 (1969), 173–182 | MR | Zbl
[7] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, M., 1979 | MR
[8] Auslander M., “On the dimension of modules and algebras. III. Global dimension”, Nagoya Math. J., 9 (1955), 67–77 | MR | Zbl
[9] Burgess W. D., Fuller K. R., Voss E. R., Zimmermann-Huisgen B., “The Cartan matrix as an indicator of finite global dimension for Artinian rings”, Proc. Amer. Math. Soc., 95 (1985), 157–165 | DOI | MR | Zbl
[10] Eizenbud D., Griffith P., “The structure of serial rings”, Pacific J. Math., 36 (1971), 109–121 | DOI | MR
[11] Fujita H., “Tiled orders of finite global dimension”, Trans. Amer. Math. Soc., 322 (1990), 329–342 | DOI | MR | Zbl
[12] Fujita H., “Erratum to ‘Tiled orders of finite global dimension’ ”, Trans. Amer. Math. Soc., 327:2 (1991), 919–920 | DOI | MR | Zbl
[13] Goldie A. W., “Torsionfree modules and rings”, J. Algebra, 1 (1964), 268–287 | DOI | MR | Zbl
[14] Gustafson W. H., “Global dimension in serial rings”, J. Algebra, 97 (1985), 14–16 | DOI | MR | Zbl
[15] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, Rings and Modules, v. 1, Kluwer Academic, Dordrecht, 2004 | MR | Zbl
[16] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, Rings and Modules, v. 2, Math. Its Appl., 586, Springer, Dordrecht, 2007 | DOI | MR | Zbl
[17] Jategaonkar V. A., “Global dimension of tiled orders over a discrete valuation ring”, Trans. Amer. Math. Soc., 196 (1974), 313–330 | DOI | MR | Zbl
[18] Kirkman E., Kuzmanovich J., “Global dimensions of a class of tiled order”, J. Algebra, 127 (1989), 57–92 | DOI | MR
[19] Kupisch H., “Beiträge zur Theorie nichthlbeinfacher Ringe mit Minimalbedingung”, Crelles J., 201 (1959), 100–112 | DOI | MR | Zbl
[20] Nakayama T., “On Frobeniusean algebras, I”, Ann. Math. (2), 40 (1939), 611–633 | DOI | MR | Zbl
[21] Nakayama T., “Note on uniserial and generalized uniserial rings”, Proc. Imp. Acad. Tokyo, 16 (1940), 285–289 | DOI | MR | Zbl
[22] Nakayama T., “On Frobeniusean algebras, II”, Ann. Math. (2), 42 (1941), 1–21 | DOI | MR | Zbl
[23] Puninski G., Serial Rings, Kluwer Academic, Dordrecht, 2001 | MR | Zbl
[24] Rump W., “Discrete posets, cell complexes, and the global dimension of tiled orders”, Commun. Algebra, 24:1 (1996), 55–107 | DOI | MR | Zbl
[25] Simson D., Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Appl., 4, Gordon and Breach, Amsterdam, 1992 | MR | Zbl
[26] Tarsy R. B., “Global dimension of orders”, Trans. Amer. Math. Soc., 151 (1970), 335–340 | DOI | MR | Zbl