Three-webs defined by a~system of ordinary differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 13-31

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a three-web $W(1,n,1)$ formed by two $n$-parametric family of curves and one-parameter family of hypersurfaces on a smooth $(n+1)$-dimensional manifold. For such webs, the family of adapted frames is defined and the structure equations are found, geometric objects arising in the third-order differential neighborhood are investigated. It is showed that every system of ordinary differential equations uniquely defines a three-web $W(1,n,1)$. Thus, there is a possibility to describe some properties of a system of ordinary differential equations in terms of the corresponding three-web $W(1,n,1)$. In particular, autonomous systems of ordinary differential equations are characterized.
@article{FPM_2010_16_2_a2,
     author = {A. A. Duyunova},
     title = {Three-webs defined by a~system of ordinary differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {13--31},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a2/}
}
TY  - JOUR
AU  - A. A. Duyunova
TI  - Three-webs defined by a~system of ordinary differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 13
EP  - 31
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a2/
LA  - ru
ID  - FPM_2010_16_2_a2
ER  - 
%0 Journal Article
%A A. A. Duyunova
%T Three-webs defined by a~system of ordinary differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 13-31
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a2/
%G ru
%F FPM_2010_16_2_a2
A. A. Duyunova. Three-webs defined by a~system of ordinary differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 13-31. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a2/