Three-webs defined by a~system of ordinary differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 13-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a three-web $W(1,n,1)$ formed by two $n$-parametric family of curves and one-parameter family of hypersurfaces on a smooth $(n+1)$-dimensional manifold. For such webs, the family of adapted frames is defined and the structure equations are found, geometric objects arising in the third-order differential neighborhood are investigated. It is showed that every system of ordinary differential equations uniquely defines a three-web $W(1,n,1)$. Thus, there is a possibility to describe some properties of a system of ordinary differential equations in terms of the corresponding three-web $W(1,n,1)$. In particular, autonomous systems of ordinary differential equations are characterized.
@article{FPM_2010_16_2_a2,
     author = {A. A. Duyunova},
     title = {Three-webs defined by a~system of ordinary differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {13--31},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a2/}
}
TY  - JOUR
AU  - A. A. Duyunova
TI  - Three-webs defined by a~system of ordinary differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 13
EP  - 31
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a2/
LA  - ru
ID  - FPM_2010_16_2_a2
ER  - 
%0 Journal Article
%A A. A. Duyunova
%T Three-webs defined by a~system of ordinary differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 13-31
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a2/
%G ru
%F FPM_2010_16_2_a2
A. A. Duyunova. Three-webs defined by a~system of ordinary differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 13-31. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a2/

[1] Azizova (Selivanova) N. Kh., “O tkanyakh iz krivykh i poverkhnostei”, Uchenye zapiski MGPI, 374:1, Voprosy differentsialnoi geometrii (1970), 7–17 | MR

[2] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, DAN SSSR, 203:2 (1972), 263–266 | MR | Zbl

[3] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 4, 1973, 179–204 | MR | Zbl

[4] Akivis M. A., Shelekhov A. M., Mnogomernye tri-tkani i ikh prilozheniya, Tverskoi gos. un-t., Tver, 2010

[5] Apresyan Yu. A., “O mnogomernykh tri-tkanyakh, obrazovannykh dvumya semeistvami giperpoverkhnostei i odnim semeistvom krivykh”, Izv. vyssh. uchebn. zaved. Matematika, 1977, no. 4, 132–135 | MR | Zbl

[6] Apresyan Yu. A., “Tri-tkani iz krivykh i giperpoverkhnostei i semeistva diffeomorfizmov odnomernykh mnogoobrazii”, Differentsialnaya geometriya, Kalininskii gos. un-t, Kalinin, 1977, 10–12 | MR

[7] Apresyan Yu. A., “Trëkhparametricheskoe semeistvo diffeomorfizmov krivoi na krivuyu, soderzhaschee dva lineinykh kompleksa odnoparametricheskikh podsemeistv spetsialnogo tipa”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1984, 8–15 | MR | Zbl

[8] Apresyan Yu. A., “Ob odnom klasse tri-tkanei na chetyrëkhmernom mnogoobrazii i sootvetstvuyuschem differentsialnom uravnenii tretego poryadka”, Izv. vyssh. uchebn. zaved. Matematika, 1985, no. 1, 3–8 | MR | Zbl

[9] Goldberg V. V., “Transversalno-geodezicheskie, shestiugolnye i gruppovye tri-tkani, obrazovannye poverkhnostyami raznykh razmernostei”, Sbornik statei po differentsialnoi geometrii, Kalininskii gos. un-t, Kalinin, 1974, 52–69 | MR

[10] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Mosk. pedagogich. gos. un-t., M., 2003

[11] Nguen Zoan Tuan, “O mnogomernykh tri-tkanyakh tipa $W(P,P,Q)$”, Geometriya pogruzhënnykh mnogoobrazii, Mosk. gos. ped. in-t, M., 1986, 101–112 | MR

[12] Nguen Zoan Tuan, “Nekotorye podklassy tri-tkanei $W(P,P,Q)$ s postoyannymi komponentami osnovnogo tenzora”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1987, 82–87 | MR | Zbl

[13] Selivanova (Azizova) N. Kh., “Intranzitivnye semeistva preobrazovanii”, Izv. vyssh. uchebn. zaved. Matematika, 1984, no. 12, 69–71 | MR | Zbl

[14] Selivanova (Azizova) N. Kh., O tri-tkani iz krivykh i giperpoverkhnostei i odnoparametricheskom semeistve diffeomorfizmov, Dep. v VINITI AN SSSR 6.06.1988, No 4448-V88, Gorkovskii inzh.-stroit. in-t, Gorkii, 1988

[15] Akivis M. A., Shelekhov A. M., Geometry and Algebra of Multidimensional Three-Webs, Kluwer Academic, Dordrecht, 1992 | MR | Zbl