Internal geometry of hypersurfaces in projectively metric space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 103-114

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the internal geometry of a hypersurface $\mathrm V_{n-1}$ embedded in a projectively metric space $\mathrm K_n$, $n\ge3$, and equipped with fields of geometric-objects $\{G^i_n,G_i\}$ and $\{H^i_n,G_i\}$ in the sense of Norden and with a field of a geometric object $\{H^i_n,H_n\}$ in the sense of Cartan. For example, we have proved that the projective-connection space $\mathrm P_{n-1, n-1}$ induced by the equipment of the hypersurface $\mathrm V_{n-1}\subset\mathrm K_n$, $n\ge3$, in the sense of Cartan with the field of a geometrical object $\{H^i_n,H_n\}$ is flat if and only if its normalization by the field of the object $\{H^i_n,G_i\}$ in the tangent bundle induces a Riemannian space $R_{n-1}$ of constant curvature $\mathrm K=-1/c$.
@article{FPM_2010_16_2_a10,
     author = {A. V. Stolyarov},
     title = {Internal geometry of hypersurfaces in projectively metric space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {103--114},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a10/}
}
TY  - JOUR
AU  - A. V. Stolyarov
TI  - Internal geometry of hypersurfaces in projectively metric space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 103
EP  - 114
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a10/
LA  - ru
ID  - FPM_2010_16_2_a10
ER  - 
%0 Journal Article
%A A. V. Stolyarov
%T Internal geometry of hypersurfaces in projectively metric space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 103-114
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a10/
%G ru
%F FPM_2010_16_2_a10
A. V. Stolyarov. Internal geometry of hypersurfaces in projectively metric space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 103-114. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a10/