Vanishing theorems for some classes of Riemann--Cartan manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a classification of Riemann–Cartan manifolds based on the orthogonal decomposition of the torsion tensor is given. Problems on the existence of two classes $\wp_1\oplus\wp_2$ and $\wp_3$ of Riemann–Cartan spaces are discussed.
@article{FPM_2010_16_2_a1,
     author = {I. A. Gordeeva},
     title = {Vanishing theorems for some classes of {Riemann--Cartan} manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {7--12},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a1/}
}
TY  - JOUR
AU  - I. A. Gordeeva
TI  - Vanishing theorems for some classes of Riemann--Cartan manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 7
EP  - 12
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a1/
LA  - ru
ID  - FPM_2010_16_2_a1
ER  - 
%0 Journal Article
%A I. A. Gordeeva
%T Vanishing theorems for some classes of Riemann--Cartan manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 7-12
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a1/
%G ru
%F FPM_2010_16_2_a1
I. A. Gordeeva. Vanishing theorems for some classes of Riemann--Cartan manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 7-12. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a1/

[1] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl

[2] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR | Zbl

[3] Chetyrëkhmernaya rimanova geometriya, Seminar Artura Besse 1978–1979, Mir, M., 1985 | MR

[4] Capozziello S., Lambiase G., Stornaiolo C., “Geometric classification of the torsion tensor in space-time”, Ann. Phys., 10 (2001), 713–727 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Cartan E., “Sur les variétés à connexion affine et la théorie de la relativé, I”, Ann. Sci. École Norm. Sup. (3), 40 (1923), 325–412 | MR | Zbl

[6] Cartan E., “Sur les variétés à connexion affine et la théorie de la relativé généralisée, I”, Ann. Sci. École Norm. Sup. (3), 41 (1924), 1–25 | MR | Zbl

[7] Cartan E., “Sur les variétés à connexion affine et la théorie de la relativé généralisée, II”, Ann. Sci. École Norm. Sup. (3), 42 (1925), 17–88 | MR | Zbl

[8] Hamond R. T., “Torsion gravity”, Rep. Prog. Phys., 65 (2002), 599–649 | DOI | MR

[9] Penrose R., “Spinors and torsion in General Relativity”, Found. Phys., 13 (1983), 325–339 | DOI | MR

[10] Puetzfeld D., “Prospects of non-Riemannian cosmology”, Proc. of the of 22nd Texas Symposium on Relativistic Astrophysics at Stanford University (Dec. 13–17, 2004), Stanford Univ. Press, 2004, 1–5

[11] Stepanov S. E., “On a conformal Killing 2-form of the electromagnetic field”, J. Geom. Phys., 33 (2000), 191–209 | DOI | MR | Zbl

[12] Trautman A., “The Einstein–Cartan theory”, Encyclopedia of Mathematical Physics, v. II, Elsevier, Oxford, 2006, 189–195