Three-webs with covariantly constant curvature and torsion tensors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 121-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a special class of multidimensional 3-webs with covariantly constant curvature and torsion tensors. In the first part, we prove that 3-webs of the class belong to $G$-webs, i.e., there is a subfamily of adapted frames whose components of curvature and torsion tensors are constant. The structure of homogeneous space $G/H$ carrying the 3-web is described. Structure equations of $G$-group are found. In the second part, we have found structure equations of $W^\nabla$-web and finite equations of some special web classes.
@article{FPM_2010_16_1_a9,
     author = {L. M. Pidzhakova},
     title = {Three-webs with covariantly constant curvature and torsion tensors},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--133},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a9/}
}
TY  - JOUR
AU  - L. M. Pidzhakova
TI  - Three-webs with covariantly constant curvature and torsion tensors
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 121
EP  - 133
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a9/
LA  - ru
ID  - FPM_2010_16_1_a9
ER  - 
%0 Journal Article
%A L. M. Pidzhakova
%T Three-webs with covariantly constant curvature and torsion tensors
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 121-133
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a9/
%G ru
%F FPM_2010_16_1_a9
L. M. Pidzhakova. Three-webs with covariantly constant curvature and torsion tensors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 121-133. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a9/

[1] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 2, 1969, 7–31 | MR | Zbl

[2] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 9, 1979, 5–246 | MR | Zbl

[3] Kovalskii O., Obobschënnye simmetricheskie prostranstva, M., 1984 | MR

[4] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 1, 1966, 139–189 | MR | Zbl

[5] Trofimov V. V., Vvedenie v geometriyu mnogoobrazii s simmetriyami, Izd-vo Mosk. un-ta, M., 1989 | MR | Zbl

[6] Shelekhov A. M., “O differentsialno-geometricheskikh ob'ektakh vysshikh poryadkov mnogomernoi tri-tkani”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 19, 1987, 101–154 | MR | Zbl

[7] Shelekhov A. M., “Klassifikatsiya mnogomernykh tri-tkanei po usloviyam zamykaniya”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 21, 1989, 109–154 | MR | Zbl

[8] Akivis M. A., Shelekhov A. M., Geometry and Algebra of Multidimensional Three-Webs, Kluwer Academic, Dordrecht, 1992 | MR | Zbl

[9] Shelekhov A. M., Pidzhakova L. M., “On three-webs with covariantly constant torsion and curvature tensors”, Webs and Quasigroups, 1998–1999, Tver State Univ., Tver, 1999, 92–103 | MR | Zbl